Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Molecules ; 28(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298960

RESUMEN

Nucleic acid nanoparticles (NANPs) require a carrier to allow for their intracellular delivery to immune cells. Cytokine production, specifically type I and III interferons, allows for reliable monitoring of the carrier effect on NANP immunostimulation. Recent studies have shown that changes in the delivery platform (e.g., lipid-based carriers vs. dendrimers) can alter NANPs' immunorecognition and downstream cytokine production in various immune cell populations. Herein, we used flow cytometry and measured cytokine induction to show how compositional variations in commercially available lipofectamine carriers impact the immunostimulatory properties of NANPs with different architectural characteristics.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Lípidos , Interferones , Inmunización
2.
Molecules ; 26(3)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513786

RESUMEN

Recent insights into the immunostimulatory properties of nucleic acid nanoparticles (NANPs) have demonstrated that variations in the shape, size, and composition lead to distinct patterns in their immunostimulatory properties. While most of these studies have used a single lipid-based carrier to allow for NANPs' intracellular delivery, it is now apparent that the platform for delivery, which has historically been a hurdle for therapeutic nucleic acids, is an additional means to tailoring NANP immunorecognition. Here, the use of dendrimers for the delivery of NANPs is compared to the lipid-based platform and the differences in resulting cytokine induction are presented.


Asunto(s)
Citocinas/metabolismo , Portadores de Fármacos/química , Nanopartículas/administración & dosificación , Nanopartículas/química , Ácidos Nucleicos/administración & dosificación , Ácidos Nucleicos/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Humanos , Lípidos/química
3.
J Biol Chem ; 294(6): 2193-2207, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30559287

RESUMEN

The gene encoding the GTPase KRAS is frequently mutated in pancreatic, lung, and colorectal cancers. The KRAS fraction in the plasma membrane (PM) correlates with activation of the mitogen-activated protein kinase (MAPK) pathway and subsequent cellular proliferation. Understanding KRAS's interaction with the PM is challenging given the complexity of the cellular environment. To gain insight into key components necessary for KRAS signal transduction at the PM, we used synthetic membranes such as liposomes and giant unilamellar vesicles. Using surface plasmon resonance (SPR) spectroscopy, we demonstrated that KRAS and Raf-1 proto-oncogene Ser/Thr kinase (RAF1) domains interact with these membranes primarily through electrostatic interactions with negatively charged lipids reinforced by additional interactions involving phosphatidyl ethanolamine and cholesterol. We found that the RAF1 region spanning RBD through CRD (RBDCRD) interacts with the membrane significantly more strongly than the isolated RBD or CRD domains and synergizes KRAS partitioning to the membrane. We also found that calmodulin and phosphodiesterase 6 delta (PDE6δ), but not galectin3 previously proposed to directly interact with KRAS, passively sequester KRAS and prevent it from partitioning into the PM. RAF1 RBDCRD interacted with membranes preferentially at nonraft lipid domains. Moreover, a C-terminal O-methylation was crucial for KRAS membrane localization. These results contribute to a better understanding of how the KRAS-membrane interaction is tuned by multiple factors whose identification could inform drug discovery efforts to disrupt this critical interaction in diseases such as cancer.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Calmodulina/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , Membranas Artificiales , Dominios Proteicos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-raf , Transducción de Señal , Electricidad Estática
4.
Anal Bioanal Chem ; 412(2): 425-438, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31776639

RESUMEN

Dynamic light scattering (DLS), transmission electron microscopy (TEM), and reversed phase-high performance liquid chromatography (RP-HPLC) are staples of nanoparticle characterization for size distribution, shape/morphology, and composition, respectively. These techniques are simple and provide important details on sample characteristics. However, DLS and TEM are routinely done in batch-mode, while RP-HPLC affords separation of components within the entire sample population, regardless of sample polydispersity. While batch-mode analysis is informative and should be a first-step analysis for any material, it may not be ideal for polydisperse formulations, such as many nanomedicines. Herein, we describe the utility of asymmetric flow field-flow fractionation (AF4) as a useful tool for a more thorough understanding of these inherently polydisperse materials. AF4 was coupled with in-line DLS for an enhanced separation and resolution of various size populations in a nanomaterial. Additionally, the various size populations were collected for offline analysis by TEM for an assessment of different shape populations, or RP-HPLC to provide a compositional analysis of each individual size population. This technique was also extended to assess nanoparticle stability, i.e., drug release, both in buffer and physiologically relevant matrix, as well as qualitatively evaluate the protein binding capacity of nanomedicines. Overall, AF4 is proven to be a very versatile technique and can provide a wealth of information on a material's polydispersity and stability. Moreover, the ability to conduct analysis in physiological matrices provides an advantage that many other routine analytical techniques do not. Graphical Abstract.


Asunto(s)
Fraccionamiento de Campo-Flujo/métodos , Nanomedicina , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Dispersión Dinámica de Luz/métodos , Humanos , Microscopía Electrónica de Transmisión/métodos , Nanopartículas/química
5.
Pharm Res ; 37(1): 6, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31828540

RESUMEN

During the past two decades the nanomedicine field has experienced significant progress. To date, over sixty nanoparticle (NP) formulations have been approved in the US and EU while many others are in clinical or preclinical development, indicating a concerted effort to translate promising bench research to commercially viable pharmaceutical products. The use of NPs as novel drug delivery systems, for example, can improve drug safety and efficacy profiles and enable access to intracellular domains of diseased cells, thus paving the way to previously intractable biological targets. However, the measurement of their physicochemical properties presents substantial challenges relative to conventional injectable formulations. In this perspective, we focus exclusively on particle size, a core property and critical quality attribute of nanomedicines. We present an overview of relevant state-of-the-art technologies for particle sizing, highlighting the main parameters that can influence the selection of techniques suitable for a specific size range or material. We consider the increasing need, and associated challenge, to measure size in physiologically relevant media. We detail the importance of standards, key to validate any measurement, and the need for suitable reference materials for processes used to characterize novel and complex NPs. This perspective highlights issues critical to achieve compliance with regulatory guidelines and to support research and manufacturing quality control.


Asunto(s)
Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Nanomedicina , Nanopartículas , Composición de Medicamentos , Humanos , Nanomedicina/métodos , Tamaño de la Partícula
6.
Toxicol Appl Pharmacol ; 350: 52-63, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29715466

RESUMEN

Despite attractive properties for both therapeutic and diagnostic applications, the clinical use of iron oxide nanoparticles (IONPs) is limited to iron replacement in severely anemic patient populations. While several studies have reported about the immunotoxicity of IONPs, the mechanisms of this toxicity are mostly unknown. We conducted a mechanistic investigation using an injectable form of IONP, Feraheme®. In the cultures of primary human T cells, Feraheme induced miotochondrial oxidative stress and resulted in changes in mitochondrial dynamics, architecture, and membrane potential. These molecular events were responsible for the decrease in cytokine production and proliferation of mitogen-activated T cells. The induction of mitoROS by T cells in response to Feraheme was insufficient to induce total redox imbalance at the cellular level. Consequently, we resolved this toxicity by the addition of the mitochondria-specific antioxidant MitoTEMPO. We further used these findings to develop an experimental framework consisting of critical assays that can be used to estimate IONP immunotoxicity. We explored this framework using several immortalized T-cell lines and found that none of them recapitulate the toxicity observed in the primary cells. Next, we compared the immunotoxicity of Feraheme to that of other FDA-approved iron-containing complex drug formulations and found that the mitochondrial damage and the resulting suppression of T-cell function are specific to Feraheme. The framework, therefore, can be used for comparing the immunotoxicity of Feraheme with that of its generic versions, while other iron-based complex drugs require case-specific mechanistic investigation.


Asunto(s)
Compuestos Férricos/toxicidad , Inmunidad Celular/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno , Linfocitos T/efectos de los fármacos , Línea Celular Transformada , Línea Celular Tumoral , Células Cultivadas , Humanos , Inmunidad Celular/fisiología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/metabolismo
7.
Anal Bioanal Chem ; 409(24): 5779-5787, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28762066

RESUMEN

Zeta potential is often used to approximate a nanoparticle's surface charge, i.e., cationic, anionic, or neutral character, and has become a standard characterization technique to evaluate nanoparticle surfaces. While useful, zeta potential values provide only very general conclusions about surface charge character. Without a thorough understanding of the measurement parameters and limitations of the technique, these values can become meaningless. This case study attempts to explore the sensitivity of zeta potential measurement using specifically formulated cationic, anionic, and neutral liposomes. This study examines zeta potential dependence on pH and ionic strength, resolving power, and highlights the sensitivity of zeta potential to charged liposomes. Liposomes were prepared with cholesterol, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and varying amounts of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS). A strong linear relationship was noted between zeta potential values and the mole percentage of charged lipids within a liposome (e.g., cationic DOTAP or anionic DOPS). This finding could be used to formulate similar liposomes to a specific zeta potential, potentially of importance for systems sensitive to highly charged species. In addition, cationic and anionic liposomes were titrated with up to two mole percent of the neutral lipid 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (lipid-PEG; LP). Very small amounts of the lipid-PEG (<0.2 mol%) were found to impart stability to the DOTAP- and DOPS-containing liposomes without significantly affecting other physicochemical properties of the formulation, providing a simple approach to making stable liposomes with cationic and anionic surface charge.


Asunto(s)
Liposomas/química , Aniones/química , Cationes/química , Colesterol/química , Ácidos Grasos Monoinsaturados/química , Concentración Osmolar , Fosfatidilcolinas/química , Fosfatidilserinas/química , Polietilenglicoles/química , Compuestos de Amonio Cuaternario/química , Electricidad Estática , Propiedades de Superficie
8.
Molecules ; 23(1)2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29267243

RESUMEN

The preclinical safety assessment of novel nanotechnology-based drug products frequently relies on in vitro assays, especially during the early stages of product development, due to the limited quantities of nanomaterials available for such studies. The majority of immunological tests require donor blood. To enable such tests one has to prevent the blood from coagulating, which is usually achieved by the addition of an anticoagulant into blood collection tubes. Heparin, ethylene diamine tetraacetic acid (EDTA), and citrate are the most commonly used anticoagulants. Novel anticoagulants such as hirudin are also available but are not broadly used. Despite the notion that certain anticoagulants may influence assay performance, a systematic comparison between traditional and novel anticoagulants in the in vitro assays intended for immunological characterization of nanotechnology-based formulations is currently not available. We compared hirudin-anticoagulated blood with its traditional counterparts in the standardized immunological assay cascade, and found that the type of anticoagulant did not influence the performance of the hemolysis assay. However, hirudin was more optimal for the complement activation and leukocyte proliferation assays, while traditional anticoagulants citrate and heparin were more appropriate for the coagulation and cytokine secretion assays. The results also suggest that traditional immunological controls such as lipopolysaccharide (LPS ) are not reliable for understanding the role of anticoagulant in the assay performance. We observed differences in the test results between hirudin and traditional anticoagulant-prepared blood for nanomaterials at the time when no such effects were seen with traditional controls. It is, therefore, important to recognize the advantages and limitations of each anticoagulant and consider individual nanoparticles on a case-by-case basis.


Asunto(s)
Anticoagulantes/química , Liposomas/química , Nanopartículas/química , Coagulación Sanguínea , Proliferación Celular , Ácido Cítrico/química , Activación de Complemento/efectos de los fármacos , Citocinas/metabolismo , Composición de Medicamentos , Ácido Edético/química , Heparina/química , Hirudinas/química , Humanos , Leucocitos/citología , Tamaño de la Partícula , Agregación Plaquetaria , Propiedades de Superficie
9.
Anal Bioanal Chem ; 407(13): 3705-16, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25749798

RESUMEN

Surface characteristics of a nanoparticle, such as functionalization with polyethylene glycol (PEG), are critical to understand and achieve optimal biocompatibility. Routine physicochemical characterization such as UV-vis spectroscopy (for gold nanoparticles), dynamic light scattering, and zeta potential are commonly used to assess the presence of PEG. However, these techniques are merely qualitative and are not sensitive enough to distinguish differences in PEG quantity, density, or presentation. As an alternative, two methods are described here which allow for quantitative measurement of PEG on PEGylated gold nanoparticles. The first, a displacement method, utilizes dithiothreitol to displace PEG from the gold surface. The dithiothreitol-coated gold nanoparticles are separated from the mixture via centrifugation, and the excess dithiothreitol and dissociated PEG are separated through reversed-phase high-performance liquid chromatography (RP-HPLC). The second, a dissolution method, utilizes potassium cyanide to dissolve the gold nanoparticles and liberate PEG. Excess CN(-), Au(CN)2 (-), and free PEG are separated using RP-HPLC. In both techniques, the free PEG can be quantified against a standard curve using charged aerosol detection. The displacement and dissolution methods are validated here using 2-, 5-, 10-, and 20-kDa PEGylated 30-nm colloidal gold nanoparticles. Further value in these techniques is demonstrated not only by quantitating the total PEG fraction but also by being able to be adapted to quantitate the free unbound PEG and the bound PEG fractions. This is an important distinction, as differences in the bound and unbound PEG fractions can affect biocompatibility, which would not be detected in techniques that only quantitate the total PEG fraction.


Asunto(s)
Aerosoles/análisis , Cromatografía Líquida de Alta Presión/métodos , Oro/análisis , Nanopartículas del Metal/química , Polietilenglicoles/análisis , Polietilenglicoles/química , Aerosoles/química , Materiales Biocompatibles Revestidos/análisis , Materiales Biocompatibles Revestidos/química , Coloides/química , Oro/química , Nanopartículas del Metal/análisis , Nanopartículas del Metal/ultraestructura , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Electricidad Estática
10.
Anal Bioanal Chem ; 407(29): 8661-72, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26449845

RESUMEN

Polyethylene glycol (PEG) is an important tool for increasing the biocompatibility of nanoparticle therapeutics. Understanding how these potential nanomedicines will react after they have been introduced into the bloodstream is a critical component of the preclinical evaluation process. Hence, it is paramount that better methods for separating, characterizing, and analyzing these complex and polydisperse formulations are developed. We present a method for separating nominal 30-nm gold nanoparticles coated with various molecular weight PEG moieties that uses only phosphate-buffered saline as the mobile phase, without the need for stabilizing surfactants. The optimized asymmetric-flow field-flow fractionation technique using in-line multiangle light scattering, dynamic light scattering, refractive index, and UV-vis detectors allowed successful separation and detection of a mixture of nanoparticles coated with 2-, 5-, 10-, and 20-kDa PEG. The particles coated with the larger PEG species (10 and 20 kDa) were eluted at times significantly earlier than predicted by field-flow fractionation theory. This was attributed to a lower-density PEG shell for the higher molecular weight PEGylated nanoparticles, which allows a more fluid PEG surface that can be greater influenced by external forces. Hence, the apparent particle hydrodynamic size may fluctuate significantly depending on the overall density of the stabilizing surface coating when an external force is applied. This has considerable implications for PEGylated nanoparticles intended for in vivo application, as nanoparticle size is important for determining circulation times, accumulation sites, and routes of excretion, and highlights the importance and value of the use of secondary size detectors when one is working with complex samples in asymmetric-flow field-flow fractionation.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Polietilenglicoles/química , Fraccionamiento de Campo-Flujo , Peso Molecular , Tamaño de la Partícula
11.
Nanomedicine ; 11(8): 1925-38, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26282378

RESUMEN

Understanding the ability of cytotoxic oncology drugs, and their carriers and formulation excipients, to induce pro-inflammatory responses is important for establishing safe and efficacious formulations. Literature data about cytokine response induction by the traditional formulation of paclitaxel, Taxol®, are controversial, and no data are available about the pro-inflammatory profile of the nano-albumin formulation of this drug, Abraxane®. Herein, we demonstrate and explain the difference in the cytokine induction profile between Taxol® and Abraxane®, and describe a novel mechanism of cytokine induction by a nanosized excipient, Cremophor EL, which is not unique to Taxol® and is commonly used in the pharmaceutical industry for delivery of a wide variety of small molecular drugs. FROM THE CLINICAL EDITOR: Advances in nanotechnology have enabled the production of many nano-formulation drugs. The cellular response to drugs has been reported to be different between traditional and nano-formulations. In this article, the authors investigated and compared cytokine response induction profiles between Taxol® and Abraxane®. The findings here provided further understanding to create drugs with better safety profiles.


Asunto(s)
Paclitaxel Unido a Albúmina/efectos adversos , Antineoplásicos/efectos adversos , Glicerol/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Paclitaxel/efectos adversos , Vehículos Farmacéuticos/efectos adversos , Polietilenglicoles/efectos adversos , Animales , Línea Celular , Glicerol/efectos adversos , Humanos , Interleucina-8/sangre , Interleucina-8/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Ratones
12.
Methods Mol Biol ; 2789: 31-34, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38506988

RESUMEN

Asymmetric-flow field-flow fractionation (AF4) is a valuable tool to separate and assess different size populations in nanotherapeutics. When coupled with both static light scattering and dynamic light scattering, it can be used to qualitatively assess protein binding to nanoparticles by comparing the shape factors for both non-plasma-incubated samples and plasma-incubated samples. The shape factor is defined as the ratio of the derived root mean square radius (by static light scattering) to the measured hydrodynamic radius (by dynamic light scattering). The shape factor gives an idea of where the center of mass lies in a nanoparticle, and any shift in the shape factor to larger values is indicative of a mass addition to the periphery of the nanoparticle and suggests the presence of protein binding. This protocol will discuss how to set up an experiment to assess protein binding in nanoparticles using AF4, multi-angle light scattering (MALS), and dynamic light scattering (DLS).


Asunto(s)
Fraccionamiento de Campo-Flujo , Nanopartículas , Dispersión Dinámica de Luz , Unión Proteica , Tamaño de la Partícula , Fraccionamiento de Campo-Flujo/métodos , Luz , Dispersión de Radiación
13.
Methods Mol Biol ; 2789: 53-66, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38506991

RESUMEN

This protocol describes how to measure the size and concentration of individual metallic nanoparticles using inductively coupled plasma-mass spectrometry (ICP-MS) in single-particle (sp) mode. Accurately determining the size of individual nanoparticles on a per-particle basis, both quickly and accurately, is an ever-increasing need within nanoparticle characterization. ICP-MS is capable of measuring a broad range of metallic nanoparticle sizes with high resolution, thus allowing the measurement of multiple particle populations for the quality assessment of nanoformulations. Additionally, spICP-MS can accurately determine particle concentrations without the need for concentration standards.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Espectrometría de Masas/métodos , Tamaño de la Partícula , Nanopartículas del Metal/química , Nanopartículas/química
14.
Methods Mol Biol ; 2789: 21-29, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38506987

RESUMEN

Nanomaterials are inherently polydisperse. Traditional techniques, such as the widely used batch-mode dynamic light-scattering (DLS) analysis, are not ideal nor thoroughly descriptive enough to define the full complexity of these materials. Asymmetric-flow field-flow fractionation (AF4) with various in-line detectors, such as ultraviolet-visible (UV-vis), multi-angle light scattering (MALS), refractive index (RI), and DLS, is an alternative technique that can provide flow-mode analysis of not only size distribution but also shape, drug release/stability, and protein binding.


Asunto(s)
Fraccionamiento de Campo-Flujo , Nanopartículas , Dispersión Dinámica de Luz , Refractometría , Fraccionamiento de Campo-Flujo/métodos , Luz , Tamaño de la Partícula
15.
Methods Mol Biol ; 2789: 75-83, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38506993

RESUMEN

Various organic solvents are widely used in the manufacturing, processing, and purification of drug substances, drug products, formulations, excipients, etc. These solvents must be removed to the lowest amount permitted, as they do not possess any therapeutic advantages and may cause undesirable toxicities. Therefore, a rapid and sensitive analytical method for the quantitation of residual solvents is needed. The following chapter presents a static headspace gas chromatographic (HSGC) method for determining the concentration of common residual solvents in various nanoformulations. An efficient and sensitive HSGC method has been developed using PerkinElmer's headspace autosampler/gas chromatographic system with a flame ionization detector (FID) and validated according to the International Conference for Harmonization (ICH) guideline Q3C. The method validation indicates that the method is specific, linear, accurate, precise, and sensitive for the analyzed solvents. The method is suitable for the analysis of 13 residual solvents (methanol, ethanol, acetone, diethyl ether, 2-propanol, acetonitrile, 1-propanol, ethyl acetate, tetrahydrofuran, dichloromethane, chloroform, 1-butanol, and pyridine) and utilizes an Elite 624 Crossbond 6% cyanopropylphenyl, 94% dimethylpolysiloxanes column with helium as a carrier gas.


Asunto(s)
Etanol , Metanol , Cromatografía de Gases/métodos , Solventes/química , Ionización de Llama , Metanol/análisis
16.
Methods Mol Biol ; 2789: 45-52, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38506990

RESUMEN

This protocol describes the use of the Spectradyne nCS1 instrument to measure the particles per mL concentration and size of nanoparticles. The Spectradyne nCS1 is a particle-analyzing instrument that uses microfluidic resistive pulse sensing, rather than optical measurements, to determine the size and concentration of samples. The size and concentration of a sample are determined by measuring the changes in voltage as particles travel through a nano-constriction in the microfluidic cartridge. This method also has the advantage over optical techniques in that measurements are not dependent on the type of material being measured (e.g., refractive index of the sample itself is not needed for accurate analysis), and only microliters (typically 5 µL) of a sample are needed for analysis.


Asunto(s)
Microfluídica , Nanopartículas , Tamaño de la Partícula , Microfluídica/métodos
17.
Methods Mol Biol ; 2789: 67-73, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38506992

RESUMEN

Ion concentration in liposomal drugs is important for drug stability and drug release profile. However, quantifying ion concentration in liposomal drugs is challenging due to the absence of chromophores or fluorophores of ions and the efficiency of their release from the liposome structure. To address these issues, a method based on reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a charged aerosol detector (CAD) has been developed to determine total, internal, and external ions in drug-loaded liposomal products. In this protocol, we focused on the quantitation of ammonium and sulfate ions in liposomal products, using generic PEGylated liposomal doxorubicin as an example. This method can be extended to calcium, acetate, and other ions in different liposomal formulations with slight modifications.


Asunto(s)
Doxorrubicina , Liposomas , Liposomas/química , Cromatografía Líquida de Alta Presión/métodos , Doxorrubicina/química , Cromatografía de Fase Inversa , Iones , Aerosoles
18.
Methods Mol Biol ; 2789: 35-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38506989

RESUMEN

Polymeric prodrugs have gained significant popularity as a strategy to enhance the bioavailability and improve the pharmacokinetic properties of active pharmaceutical ingredients (API). Since the amount of the API in a polymeric prodrug product directly impacts both safety and efficacy, there is a pressing need for robust and accurate analytical methods to quantify the API in these formulations. Presently, drug quantification methods include reversed-phase high-performance liquid chromatography (RP-HPLC) and size exclusion chromatography (SEC)-based molecular weight determination. Even though these methods are highly precise and reproducible, a deep understanding of chromatography is required for complex method development, including optimization of the elution profile and selecting the appropriate column and mobile phase. In this chapter, we introduce the automated elemental analyzer for drug quantification, which is simple to use and does not require special method development.


Asunto(s)
Medicamentos a Granel , Composición de Medicamentos , Cromatografía en Gel , Cromatografía Líquida de Alta Presión/métodos , Preparaciones Farmacéuticas
19.
Methods Mol Biol ; 2789: 3-17, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38506986

RESUMEN

Nanotechnology for drug delivery has made significant advancements over the last two decades. Innovations have been made in cancer research and development, including chemotherapies, imaging agents, and vaccine strategies, as well as other therapeutic areas, e.g., the recent commercialization of mRNA lipid nanoparticles as vaccines against the SARS-CoV-2 virus. The field has also seen technological advancements to aid in addressing the complex questions posed by these novel therapies. In this latest edition of protocols and methods for nanoparticle characterization, we highlight both old and new methodologies for defining physicochemical properties, present both in vitro and in vivo methods to test for a variety of immunotoxicities, and describe assays used for pharmacological studies to assess drug release and tissue distribution.


Asunto(s)
Nanopartículas , Vacunas , Nanomedicina/métodos , Nanotecnología/métodos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química
20.
J Pharm Sci ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276979

RESUMEN

Nanomedicine drug products have reached an unprecedented high in terms of global commercial acceptance and media exposure with the approvals of the mRNA COVID-19 vaccines in 2021. In this paper, we examine the current state of the art for nanomedicine technologies as applied for pharmaceutical products and compare those trends with results from a recent IQ Consortium industry survey on nanomedicine drug products. We find that 1) industry companies continue to push the envelope in terms of new technologies for characterizing their specific drug products, 2) new analytical technologies continue to be utilized by industry to characterize the increasingly complex nanomedicine drug products and 3) alignment and communication are key between industry and regulatory authorities to better understand the regulatory filings that are being submitted. There are many CMC challenges that a company must overcome to successfully file a nanomedicine drug product. In 2022, the FDA Guidance on Drug Products containing Nanomaterials was published, and it provides a roadmap for submission of a nanomedicine drug product. We propose that our paper serves as a complimentary guide providing knowledge on specific CMC issues such as quality attributes, physicochemical characterization methods, excipients, and stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA