Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Clin Dent ; 18(2): 39-44, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17508622

RESUMEN

OBJECTIVE: While it is important to monitor dental water quality, it is unclear whether in-office test kits provide bacterial counts comparable to the gold standard method (R2A). Studies were conducted on specimens with known bacterial concentrations, and from dental units, to evaluate test kit accuracy across a range of bacterial types and loads. METHODOLOGY: Colony forming units (CFU) were counted for samples from each source, using R2A and two types of test kits, and conformity to Poisson distribution expectations was evaluated. Poisson regression was used to test for effects of source and device, and to estimate rate ratios for kits relative to R2A. RESULTS: For all devices, distributions were Poisson for low CFU/mL when only beige-pigmented bacteria were considered. For higher counts, R2A remained Poisson, but kits exhibited over-dispersion. Both kits undercounted relative to R2A, but the degree of undercounting was reasonably stable. Kits did not grow pink-pigmented bacteria from dental-unit water identified as Methylobacterium rhodesianum. CONCLUSION: Only one of the test kits provided results with adequate reliability at higher bacterial concentrations. Undercount bias could be estimated for this device and used to adjust test kit results. Insensitivity to methylobacteria spp. is problematic.


Asunto(s)
Equipo Dental , Control de Infección Dental/métodos , Modelos Estadísticos , Microbiología del Agua , Recuento de Colonia Microbiana , Contaminación de Equipos , Funciones de Verosimilitud , Pruebas de Sensibilidad Microbiana , Distribución de Poisson , Análisis de Regresión
2.
ACS Chem Biol ; 6(3): 234-44, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21090814

RESUMEN

Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38α (involved in the formation of TNFα and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional (1)H/(13)C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38α both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in similar fashion to Jnk-1 siRNA and to rosiglitazone treatment. Together, the data suggest that these new ligand series bind to a novel, allosteric, and physiologically relevant site and therefore represent a unique approach to identify kinase inhibitors.


Asunto(s)
Descubrimiento de Drogas , Proteína Quinasa 8 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos X , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteína Quinasa 8 Activada por Mitógenos/química , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Bibliotecas de Moléculas Pequeñas , Estereoisomerismo , Relación Estructura-Actividad , Proteínas Quinasas p38 Activadas por Mitógenos/química , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Chem Biol Drug Des ; 69(6): 395-404, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17581233

RESUMEN

As part of a fully integrated and comprehensive strategy to discover novel antibacterial agents, NMR- and mass spectrometry-based affinity selection screens were performed to identify compounds that bind to protein targets uniquely found in bacteria and encoded by genes essential for microbial viability. A biphenyl acid lead series emerged from an NMR-based screen with the Haemophilus influenzae protein HI0065, a member of a family of probable ATP-binding proteins found exclusively in eubacteria. The structure-activity relationships developed around the NMR-derived biphenyl acid lead were consistent with on-target antibacterial activity as the Staphylococcus aureus antibacterial activity of the series correlated extremely well with binding affinity to HI0065, while the correlation of binding affinity with B-cell cytotoxicity was relatively poor. Although further studies are needed to conclusively establish the mode of action of the biphenyl series, these compounds represent novel leads that can serve as the basis for the development of novel antibacterial agents that appear to work via an unprecedented mechanism of action. Overall, these results support the genomics-driven hypothesis that targeting bacterial essential gene products that are not present in eukaryotic cells can identify novel antibacterial agents.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Antibacterianos/química , Proteínas Bacterianas/metabolismo , Química Farmacéutica/métodos , Haemophilus influenzae/metabolismo , Secuencia de Aminoácidos , Animales , Linfocitos B/metabolismo , Diseño de Fármacos , Genoma Bacteriano , Genómica , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Datos de Secuencia Molecular , Unión Proteica , Relación Estructura-Actividad
4.
Anal Biochem ; 328(2): 131-8, 2004 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15113688

RESUMEN

Bcl-xL is a member of the Bcl-2 family of proteins that are implicated to play a vital role in several diseases including cancer. Bcl-xL suppresses apoptosis; thus the inhibition of Bcl-xL function could restore the apoptotic process. To identify antagonists of Bcl-xL function, two ultra-high-throughput screens were implemented. An activity assay utilized fluorescence polarization, based on the binding of fluorescein-labeled peptide [the BH3 domain of BAD protein (F-Bad 6)] to Bcl-xL. A 384-well plate assay with mixtures of 10 drug compounds per well, combined with a fast plate reader, resulted in a throughput of 46,080 data points/day. Utilizing this screening format, 370,400 compounds were screened in duplicate and 425 inhibitors with an IC(50) below 100 microM were identified. The second assay format, affinity selection/mass spectrometry (ASMS), used ultrafiltration to separate Bcl-xL binders from nonbinders in mixtures of 2400 compounds. The bound species were subsequently separated from the protein and analyzed by flow injection electrospray mass spectrometry. Utilizing the ASMS format, 263,382 compounds were screened in duplicate and 29 binders with affinities below 100 microM were identified. Two novel classes of Bcl-xL inhibitors were identified by both methods and confirmed to bind (13)C-labeled Bcl-xL using heteronuclear magnetic resonance spectroscopy.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , Preparaciones Farmacéuticas/análisis , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Apoptosis/genética , Apoptosis/fisiología , Unión Competitiva , Proteínas Portadoras/análisis , Proteínas Portadoras/metabolismo , Dimetilsulfóxido/química , Polarización de Fluorescencia , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Volumetría , Proteína bcl-X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA