Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Sports Sci ; 41(1): 1-7, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37002685

RESUMEN

Our aim was to characterize fluid intake during outdoor team sport training and use generalized additive models to quantify interactions with the environment and performance. Fluid intake, body mass (BM) and internal/external training load data were recorded for male rugby union (n = 19) and soccer (n = 19) athletes before/after field training sessions throughout an 11-week preseason (357 observations). Running performance (GPS) and environmental conditions were recorded each session and generalized additive models were applied in the analysis of data. Mean body mass loss throughout all training sessions was -1.11 ± 0.63 kg (~1.3%) compared with a mean fluid intake at each session of 958 ± 476 mL during the experimental period. For sessions >110 min, when fluid intake reached ~10-19 mL·kg-1 BM the total distance increased (7.47 to 8.06 km, 7.6%; P = 0.049). Fluid intake above ~10 mL·kg-1 BM was associated with a 4.1% increase in high-speed running distance (P < 0.0001). Most outdoor team sport athletes fail to match fluid loss during training, and fluid intake is a strong predictor of running performance. Improved hydration practices during training should be beneficial and we provide a practical ingestion range to promote improved exercise capacity in outdoor team sport training sessions.


Asunto(s)
Rendimiento Atlético , Fútbol , Humanos , Masculino , Deportes de Equipo , Estaciones del Año , Ingestión de Líquidos , Deshidratación/prevención & control
2.
Int J Sport Nutr Exerc Metab ; 33(2): 121-132, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36572039

RESUMEN

This review discusses the potential value of tracking interstitial glucose with continuous glucose monitors (CGMs) in athletes, highlighting possible applications and important considerations in the collection and interpretation of interstitial glucose data. CGMs are sensors that provide real time, longitudinal tracking of interstitial glucose with a range of commercial monitors currently available. Recent advancements in CGM technology have led to the development of athlete-specific devices targeting glucose monitoring in sport. Although largely untested, the capacity of CGMs to capture the duration, magnitude, and frequency of interstitial glucose fluctuations every 1-15 min may present a unique opportunity to monitor fueling adequacy around competitive events and training sessions, with applications for applied research and sports nutrition practice. Indeed, manufacturers of athlete-specific devices market these products as a "fueling gauge," enabling athletes to "push their limits longer and get bigger gains." However, as glucose homeostasis is a complex phenomenon, extensive research is required to ascertain whether systemic glucose availability (estimated by CGM-derived interstitial glucose) has any meaning in relation to the intended purposes in sport. Whether CGMs will provide reliable and accurate information and enhance sports nutrition knowledge and practice is currently untested. Caveats around the use of CGMs include technical issues (dislodging of sensors during periods of surveillance, loss of data due to synchronization issues), practical issues (potential bans on their use in some sporting scenarios, expense), and challenges to the underpinning principles of data interpretation, which highlight the role of sports nutrition professionals to provide context and interpretation.


Asunto(s)
Ciencias de la Nutrición y del Deporte , Deportes , Humanos , Glucemia , Automonitorización de la Glucosa Sanguínea , Glucosa
3.
J Strength Cond Res ; 36(6): 1622-1628, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32658031

RESUMEN

ABSTRACT: O'Connor, FK, Doering, TM, Minett, GM, Reaburn, PR, Bartlett, JD and Coffey, VG. Effect of divergent solar radiation exposure with outdoor versus indoor training in the heat: implications for performance. J Strength Cond Res 36(6): 1622-1628, 2022-The aim of this study was to determine physiological and perceptual responses and performance outcomes when completing high-intensity exercise in outdoor and indoor hot environments with contrasting solar radiation exposure. Seven cyclists and 9 Australian Football League (AFL) players undertook cycling trials in hot conditions (≥30 °C) outdoors and indoors. Cyclists completed 5 × 4 minutes intervals (∼80% peak power output [PPO]) with 2 minutes recovery (∼40% PPO) before a 20-km self-paced ride. Australian Football League players completed a standardized 20 minutes warm-up (∼65% mean 4-minute power output) then 5 × 2 minutes maximal effort intervals. Heart rate (HR), PO, ratings of perceived exertion (RPE), thermal comfort (TC), and thermal sensation (TS) were recorded. Core (Tc) and skin temperature (Tsk) were monitored in cyclists alone. In both studies, ambient temperature, relative humidity, and solar radiation were monitored outdoors and matched for ambient temperature and relative humidity indoors, generating different wet bulb globe temperature (WBGT) for cyclists, but the similar WBGT for AFL players through higher relative humidity indoors. The statistical significance was set at p ≤ 0.05. Cyclists' HR (p = 0.05), Tc (p = 0.03), and Tsk (p = 0.03) were higher outdoors with variable effects for increased RPE, TS, and TC (d = 0.2-1.3). Power output during intervals was not different between trials, but there were small-moderate improvements in cyclists' PO and 20-km time indoors (d = 0.3-0.6). There was a small effect (d = 0.2) for AFL players' mean PO to increase outdoors for interval 4 alone (p = 0.04); however, overall there were small-moderate effects for lower RPE and TS indoors (d = 0.2-0.5). Indoor training in hot conditions without solar radiation may promote modest reductions in physiological strain and improve performance capacity in well-trained athletes.


Asunto(s)
Calor , Exposición a la Radiación , Australia , Frecuencia Cardíaca/fisiología , Humanos , Esfuerzo Físico/fisiología , Temperatura Cutánea
4.
Exp Physiol ; 106(3): 714-725, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33486778

RESUMEN

NEW FINDINGS: What is the central question of this study? The extent to which genetics determines adaptation to endurance versus resistance exercise is unclear. Previously, a divergent selective breeding rat model showed that genetic factors play a major role in the response to aerobic training. Here, we asked: do genetic factors that underpin poor adaptation to endurance training affect adaptation to functional overload? What is the main finding and its importance? Our data show that heritable factors in low responders to endurance training generated differential gene expression that was associated with impaired skeletal muscle hypertrophy. A maladaptive genotype to endurance exercise appears to dysregulate biological processes responsible for mediating exercise adaptation, irrespective of the mode of contraction stimulus. ABSTRACT: Divergent skeletal muscle phenotypes result from chronic resistance-type versus endurance-type contraction, reflecting the principle of training specificity. Our aim was to determine whether there is a common set of genetic factors that influence skeletal muscle adaptation to divergent contractile stimuli. Female rats were obtained from a genetically heterogeneous rat population and were selectively bred from high responders to endurance training (HRT) or low responders to endurance training (LRT; n = 6/group; generation 19). Both groups underwent 14 days of synergist ablation to induce functional overload of the plantaris muscle before comparison to non-overloaded controls of the same phenotype. RNA sequencing was performed to identify Gene Ontology biological processes with differential (LRT vs. HRT) gene set enrichment. We found that running distance, determined in advance of synergist ablation, increased in response to aerobic training in HRT but not LRT (65 ± 26 vs. -6 ± 18%, mean ± SD, P < 0.0001). The hypertrophy response to functional overload was attenuated in LRT versus HRT (20.1 ± 5.6 vs. 41.6 ± 16.1%, P = 0.015). Between-group differences were observed in the magnitude of response of 96 upregulated and 101 downregulated pathways. A further 27 pathways showed contrasting upregulation or downregulation in LRT versus HRT in response to functional overload. In conclusion, low responders to aerobic endurance training were also low responders for compensatory hypertrophy, and attenuated hypertrophy was associated with differential gene set regulation. Our findings suggest that genetic factors that underpin aerobic training maladaptation might also dysregulate the transcriptional regulation of biological processes that contribute to adaptation to mechanical overload.


Asunto(s)
Entrenamiento Aeróbico , Condicionamiento Físico Animal , Adaptación Fisiológica/fisiología , Animales , Femenino , Humanos , Hipertrofia/metabolismo , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/fisiología , Resistencia Física , Ratas
5.
J Strength Cond Res ; 35(5): 1273-1278, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33900260

RESUMEN

ABSTRACT: Salagaras, BS, Mackenzie-Shalders, KL, Nelson, MJ, Fraysse, F, Wycherley, TP, Slater, GJ, McLellan, C, Kumar, K, and Coffey, VG. Comparisons of daily energy intake vs. expenditure using the GeneActiv accelerometer in elite Australian Football athletes. J Strength Cond Res 35(5): 1273-1278, 2021-To assess validity of the GeneActiv accelerometer for use within an athlete population and compare energy expenditure (EE) with energy and macronutrient intake of elite Australian Football athletes during a competition week. The GeneActiv was first assessed for utility during high-intensity exercise with indirect calorimetry. Thereafter, 14 professional Australian Football athletes (age, 24 ± 4 [SD] y; height, 1.87 ± 0.08 m; body mass, 86 ± 10 kg) wore the accelerometer and had dietary intake assessed via dietitian-led 24-hour recalls throughout a continuous 7 days of competition period (including match day). There was a significant relationship between metabolic equivalents and GeneActiv g·min-1 (SEE 1.77 METs; r2 = 0.64; p < 0.0001). Across the in-season week a significant difference only occurred on days 3 and 4 (day 3: energy intake [EI] EI 137 ± 31 kJ·kg-1·d-1; 11,763 ± 2,646 kJ·d-1 and EE: 186 ± 14 kJ·kg-1·d-1; 16,018 ± 1973 kJ·d-1; p < 0.05; d = -1.4; day 4: EI: 179 ± 44 kJ·kg-1·d-1, 15,413 ± 3,960 kJ·d-1 and EE: 225 ± 42 kJ·kg-1·d-1; 19,313 ± 3,072 kJ·d-1; d = -0.7). Carbohydrate intake (CI) was substantially below current sports nutrition recommendations on 6 of 7 days with deficits ranging from -1 to -7.2 g·kg-1·d-1 (p < 0.05), whereas daily protein and fat intake was adequate. In conclusion, the GeneActiv provides effective estimation of EE during weekly preparation for a professional team sport competition. Australian Footballers attempt to periodize dietary EI to varying daily training loads but fail to match expenditure on higher-training load days. Specific dietary strategies to increase CI may be beneficial to achieve appropriate energy balance and macronutrient distribution, particularly on days where athletes undertake multiple training sessions.


Asunto(s)
Deportes de Equipo , Adulto , Humanos , Adulto Joven , Acelerometría , Atletas , Australia , Ingestión de Energía , Metabolismo Energético , Gastos en Salud , Fenómenos Fisiológicos en la Nutrición Deportiva
6.
Br J Sports Med ; 54(10): 573-581, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-30824459

RESUMEN

OBJECTIVE: To determine the effects of multi-ingredient protein (MIP) supplements on resistance exercise training (RT)-induced gains in muscle mass and strength compared with protein-only (PRO) or placebo supplementation. DATA SOURCES: Systematic search of MEDLINE, Embase, CINAHL and SPORTDiscus. ELIGIBILITY CRITERIA: Randomised controlled trials with interventions including RT ≥6 weeks in duration and a MIP supplement. DESIGN: Random effects meta-analyses were conducted to determine the effect of supplementation on fat-free mass (FFM), fat mass, one-repetition maximum (1RM) upper body and 1RM lower body muscular strength. Subgroup analyses compared the efficacy of MIP supplementation relative to training status and chronological age. RESULTS: The most common MIP supplements included protein with creatine (n=17) or vitamin D (n=10). Data from 35 trials with 1387 participants showed significant (p<0.05) increases in FFM (0.80 kg (95% CI 0.44 to 1.15)), 1RM lower body (4.22 kg (95% CI 0.79 to 7.64)) and 1RM upper body (2.56 kg (95% CI 0.79 to 4.33)) where a supplement was compared with all non-MIP supplemented conditions (means (95% CI)). Subgroup analyses indicated a greater effect of MIP supplements compared with all non-MIP supplements on FFM in untrained (0.95 kg (95% CI 0.51 to 1.39), p<0.0001) and older participants (0.77 kg (95% CI 0.11 to 1.43), p=0.02); taking MIP supplements was also associated with gains in 1RM upper body (1.56 kg (95% CI 0.80 to 2.33), p=0.01) in older adults. SUMMARY/CONCLUSIONS: When MIP supplements were combined with resistance exercise training, there were greater gains in FFM and strength in healthy adults than in counterparts who were supplemented with non-MIP. MIP supplements were not superior when directly compared with PRO supplements. The magnitude of effect of MIP supplements was greater (in absolute values) in untrained and elderly individuals undertaking RT than it was in trained individuals and in younger people. TRIAL REGISTRATION NUMBER: CRD42017081970.


Asunto(s)
Proteínas en la Dieta/administración & dosificación , Suplementos Dietéticos , Fuerza Muscular/fisiología , Músculo Esquelético/anatomía & histología , Músculo Esquelético/fisiología , Entrenamiento de Fuerza , Factores de Edad , Índice de Masa Corporal , Creatina/administración & dosificación , Humanos , Sustancias para Mejorar el Rendimiento/administración & dosificación , Aptitud Física/fisiología
7.
J Sports Sci ; 38(14): 1635-1649, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32397898

RESUMEN

The systematic review and meta-analysis evaluated the effect of aerobic, resistance and combined exercise on RMR (kCal·day-1) and performed a methodological assessment of indirect calorimetry protocols within the included studies. Subgroup analyses included energy/diet restriction and body composition changes. Randomized control trials (RCTs), quasi - RCTs and cohort trials featuring a physical activity intervention of any form and duration excluding single exercise bouts were included. Participant exclusions included medical conditions impacting upon RMR, the elderly (≥65 years of age) or pregnant, lactating or post-menopausal women. The review was registered in the International Prospective Register of Systematic Reviews (CRD 42,017,058,503). 1669 articles were identified; 22 were included in the qualitative analysis and 18 were meta-analysed. Exercise interventions (aerobic and resistance exercise combined) did not increase resting metabolic rate (mean difference (MD): 74.6 kCal·day-1[95% CI: -13.01, 161.33], P = 0.10). While there was no effect of aerobic exercise on RMR (MD: 81.65 kCal·day-1[95% CI: -57.81, 221.10], P = 0.25), resistance exercise increased RMR compared to controls (MD: 96.17 kCal·day-1[95% CI: 45.17, 147.16], P = 0.0002). This systematic review effectively synthesises the effect of exercise interventions on RMR in comparison to controls; despite heterogenous methodologies and high risk of bias within included studies.


Asunto(s)
Metabolismo Basal/fisiología , Ejercicio Físico/fisiología , Calorimetría Indirecta , Humanos , Entrenamiento de Fuerza
8.
J Physiol ; 595(9): 2883-2896, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27506998

RESUMEN

Specificity is a core principle of exercise training to promote the desired adaptations for maximising athletic performance. The principle of specificity of adaptation is underpinned by the volume, intensity, frequency and mode of contractile activity and is most evident when contrasting the divergent phenotypes that result after undertaking either prolonged endurance or resistance training. The molecular profiles that generate the adaptive response to different exercise modes have undergone intense scientific scrutiny. Given divergent exercise induces similar signalling and gene expression profiles in skeletal muscle of untrained or recreationally active individuals, what is currently unclear is how the specificity of the molecular response is modified by prior training history. The time course of adaptation and when 'phenotype specificity' occurs has important implications for exercise prescription. This context is essential when attempting to concomitantly develop resistance to fatigue (through endurance-based exercise) and increased muscle mass (through resistance-based exercise), typically termed 'concurrent training'. Chronic training studies provide robust evidence that endurance exercise can attenuate muscle hypertrophy and strength but the mechanistic underpinning of this 'interference' effect with concurrent training is unknown. Moreover, despite the potential for several key regulators of muscle metabolism to explain an incompatibility in adaptation between endurance and resistance exercise, it now seems likely that multiple integrated, rather than isolated, effectors or processes generate the interference effect. Here we review studies of the molecular responses in skeletal muscle and evidence for the interference effect with concurrent training within the context of the specificity of training adaptation.


Asunto(s)
Músculo Esquelético/metabolismo , Acondicionamiento Físico Humano/fisiología , Adaptación Fisiológica , Humanos , Músculo Esquelético/fisiología , Acondicionamiento Físico Humano/métodos
9.
Am J Physiol Endocrinol Metab ; 311(5): E836-E849, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27677502

RESUMEN

Alcohol ingestion decreases postexercise rates of muscle protein synthesis, but the mechanism(s) (e.g., increased protein breakdown) underlying this observation is unknown. Autophagy is an intracellular "recycling" system required for homeostatic substrate and organelle turnover; its dysregulation may provoke apoptosis and lead to muscle atrophy. We investigated the acute effects of alcohol ingestion on autophagic cell signaling responses to a bout of concurrent (combined resistance- and endurance-based) exercise. In a randomized crossover design, eight physically active males completed three experimental trials of concurrent exercise with either postexercise ingestion of alcohol and carbohydrate (12 ± 2 standard drinks; ALC-CHO), energy-matched alcohol and protein (ALC-PRO), or protein (PRO) only. Muscle biopsies were taken at rest and 2 and 8 h postexercise. Select autophagy-related gene (Atg) proteins decreased compared with rest with ALC-CHO (P < 0.05) but not ALC-PRO. There were parallel increases (P < 0.05) in p62 and PINK1 commensurate with a reduction in BNIP3 content, indicating a diminished capacity for mitochondria-specific autophagy (mitophagy) when alcohol and carbohydrate were coingested. DNA fragmentation increased in both alcohol conditions (P < 0.05); however, nuclear AIF accumulation preceded this apoptotic response with ALC-CHO only (P < 0.05). In contrast, increases in the nuclear content of p53, TFEB, and PGC-1α in ALC-PRO were accompanied by markers of mitochondrial biogenesis at the transcriptional (Tfam, SCO2, and NRF-1) and translational (COX-IV, ATPAF1, and VDAC1) level (P < 0.05). We conclude that alcohol ingestion following exercise triggers apoptosis, whereas the anabolic properties of protein coingestion may stimulate mitochondrial biogenesis to protect cellular homeostasis.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Carbohidratos de la Dieta/farmacología , Proteínas en la Dieta/farmacología , Etanol/farmacología , Ejercicio Físico/fisiología , Fibras Musculares Esqueléticas/efectos de los fármacos , Adolescente , Adulto , Consumo de Bebidas Alcohólicas , Apoptosis/fisiología , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/metabolismo , Estudios Cruzados , Fragmentación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Complejo IV de Transporte de Electrones/efectos de los fármacos , Complejo IV de Transporte de Electrones/metabolismo , Voluntarios Sanos , Humanos , Masculino , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/efectos de los fármacos , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Mitofagia/efectos de los fármacos , Mitofagia/fisiología , Chaperonas Moleculares/efectos de los fármacos , Chaperonas Moleculares/metabolismo , Fibras Musculares Esqueléticas/fisiología , Factor Nuclear 1 de Respiración/efectos de los fármacos , Factor Nuclear 1 de Respiración/metabolismo , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas Quinasas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Unión al ARN/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/efectos de los fármacos , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Adulto Joven
10.
Am J Physiol Regul Integr Comp Physiol ; 309(5): R603-12, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26136534

RESUMEN

Autophagy contributes to remodeling of skeletal muscle and is sensitive to contractile activity and prevailing energy availability. We investigated changes in targeted genes and proteins with roles in autophagy following 5 days of energy balance (EB), energy deficit (ED), and resistance exercise (REX) after ED. Muscle biopsies from 15 subjects (8 males, 7 females) were taken at rest following 5 days of EB [45 kcal·kg fat free mass (FFM)(-1)·day(-1)] and 5 days of ED (30 kcal·kg FFM(-1)·day(-1)). After ED, subjects completed a bout of REX and consumed either placebo (PLA) or 30 g whey protein (PRO) immediately postexercise. Muscle biopsies were obtained at 1 and 4 h into recovery in each trial. Resting protein levels of autophagy-related gene protein 5 (Atg5) decreased after ED compared with EB (∼23%, P < 0.001) and remained below EB from 1 to 4 h postexercise in PLA (∼17%) and at 1 h in PRO (∼18%, P < 0.05). In addition, conjugated Atg5 (cAtg12) decreased below EB in PLA at 4 h (∼20, P < 0.05); however, its values were increased above this time point in PRO at 4 h alongside increases in FOXO1 above EB (∼22-26%, P < 0.05). Notably, these changes were subsequent to increases in unc-51-like kinase 1(Ser757) phosphorylation (∼60%) 1 h postexercise in PRO. No significant changes in gene expression of selected autophagy markers were found, but EGR-1 increased above ED and EB in PLA (∼417-864%) and PRO (∼1,417-2,731%) trials 1 h postexercise (P < 0.001). Postexercise protein availability, compared with placebo, can selectively promote autophagic responses to REX in ED.


Asunto(s)
Autofagia , Ingestión de Energía , Metabolismo Energético , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza , Transducción de Señal , Proteína de Suero de Leche/administración & dosificación , Adulto , Autofagia/genética , Biopsia , Femenino , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , ARN Mensajero/metabolismo , Transducción de Señal/genética , Estrés Fisiológico , Factores de Tiempo , Victoria , Proteína de Suero de Leche/metabolismo , Adulto Joven
11.
Eur J Appl Physiol ; 115(6): 1185-94, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25650067

RESUMEN

PURPOSE: We determined the effect of reduced muscle glycogen availability on cellular pathways regulating mitochondrial biogenesis and substrate utilization after a bout of resistance exercise. METHODS: Eight young, recreationally trained men undertook a glycogen depletion protocol of one-leg cycling to fatigue (LOW), while the contralateral (control) leg rested (CONT). Following an overnight fast, subjects completed 8 sets of 5 unilateral leg press repetitions (REX) at 80 % 1 Repetition Maximum (1RM) on each leg. Subjects consumed 500 mL protein/CHO beverage (20 g whey + 40 g maltodextrin) upon completion of REX and 2 h later. Muscle biopsies were obtained at rest and 1 and 4 h after REX in both legs. RESULTS: Resting muscle glycogen was higher in the CONT than LOW leg (~384 ± 114 vs 184 ± 36 mmol kg(-1) dry wt; P < 0.05), and 1 h and 4 h post-exercise (P < 0.05). Phosphorylation of p53(Ser15) increased 1 h post-exercise in LOW (~115 %, P < 0.05) and was higher than CONT at this time point (~87 %, P < 0.05). p38MAPK(Thr180/Tyr182) phosphorylation increased 1 h post-exercise in both CONT and LOW (~800-900 %; P < 0.05) but remained above rest at 4 h only in CONT (~585 %, P < 0.05; different between legs P < 0.05). Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) mRNA was elevated 4 h post-exercise in LOW (~200 %, P < 0.05; different between legs P < 0.05). There were no changes in Fibronectin type III domain-containing protein 5 (FNDC5) mRNA for CONT or LOW legs post-exercise. CONCLUSION: Undertaking resistance exercise with low glycogen availability may enhance mitochondrial-related adaptations through p53 and PGC-1α-mediated signalling.


Asunto(s)
Glucógeno/metabolismo , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/metabolismo , Adulto , Humanos , Masculino , Músculo Esquelético/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
12.
Am J Physiol Endocrinol Metab ; 306(8): E989-97, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24595305

RESUMEN

The myofibrillar protein synthesis (MPS) response to resistance exercise (REX) and protein ingestion during energy deficit (ED) is unknown. In young men (n = 8) and women (n = 7), we determined protein signaling and resting postabsorptive MPS during energy balance [EB; 45 kcal·kg fat-free mass (FFM)(-1)·day(-1)] and after 5 days of ED (30 kcal·kg FFM(-1)·day(-1)) as well as MPS while in ED after acute REX in the fasted state and with the ingestion of whey protein (15 and 30 g). Postabsorptive rates of MPS were 27% lower in ED than EB (P < 0.001), but REX stimulated MPS to rates equal to EB. Ingestion of 15 and 30 g of protein after REX in ED increased MPS ~16 and ~34% above resting EB (P < 0.02). p70 S6K Thr(389) phosphorylation increased above EB only with combined exercise and protein intake (~2-7 fold, P < 0.05). In conclusion, short-term ED reduces postabsorptive MPS; however, a bout of REX in ED restores MPS to values observed at rest in EB. The ingestion of protein after REX further increases MPS above resting EB in a dose-dependent manner. We conclude that combining REX with increased protein availability after exercise enhances rates of skeletal muscle protein synthesis during short-term ED and could in the long term preserve muscle mass.


Asunto(s)
Proteínas en la Dieta/farmacología , Metabolismo Energético , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Entrenamiento de Fuerza , Descanso/fisiología , Adulto , Proteínas en la Dieta/administración & dosificación , Regulación hacia Abajo , Ingestión de Alimentos , Metabolismo Energético/efectos de los fármacos , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Biosíntesis de Proteínas , Adulto Joven
13.
J Diabetes Sci Technol ; : 19322968241250355, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726672

RESUMEN

OBJECTIVES: The application of continuous glucose monitors (CGMs) to measure interstitial glucose in athletic populations is limited by the lack of accepted athlete-specific reference values. The aim of this study was to develop athlete-specific reference ranges for glycemic variability under standardized diet and exercise conditions. METHODS: A total of 12 elite racewalkers (n = 7 men, 22.4 ± 3.5 years, VO2max 61.6 ± 7.3 mL kg-1 min-1) completed two 4-d trials separated by 4-d. Athletes were provided a high-energy, high-carbohydrate diet (225 ± 1.6 kJ kg-1 day-1, 8.4 ± 0.3 g kg-1 day-1 carbohydrate) and completed standardized daily exercise. The timing of food consumed and exercise undertaken were matched each day across the 4-d trials. Interstitial glucose data were collected via Freestyle Libre 2 CGMs. Glycemic variability was calculated as the mean amplitude of glycemic excursions (MAGEs), mean of daily differences (MODD), and standard deviation (SD). RESULTS: Twenty-four hour MODD, MAGE, and SD for interstitial glucose were 12.6 ± 1.8 mg/dL (0.7 ± 0.1 mmol/L), 36.0 ± 5.4 mg/dL (2.0 ± 0.3 mmol/L), and 16.2 ± 1.8 mg/dL (0.9 ± 0.1 mmol/L), respectively. Twenty-four hour mean glucose (MG; 102.6 ± 5.4 mg/dL [5.7 ± 0.3 mmol/L]) was higher than overnight (91.8 ± 5.4 mg/dL [5.1 ± 0.3 mmol/L]; P < .0001) and was lower in women than men (99.0 ± 3.6 mg/dL [5.5 ± 0.2 mmol/L] vs 104.4 ± 3.6 mg/dL [5.8 ± 0.2 mmol/L]; P = .059, d = 1.4). CONCLUSIONS: This study provides reference indices under standardized diet and exercise conditions for glycemic variability derived from CGMs in endurance athletes which are similar than previously reported for healthy individuals, despite strenuous daily training and a high daily energy and carbohydrate diet.

14.
Aging Cell ; 23(1): e13859, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37128843

RESUMEN

Exercise training prevents age-related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late-life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we performed a powerful meta-analysis of the methylome and transcriptome of an unprecedented number of human skeletal muscle samples (n = 3176). We show that: (1) individuals with higher baseline aerobic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training leads to significant shifts of epigenetic and transcriptomic patterns toward a younger profile, and (3) muscle disuse "ages" the transcriptome. Higher fitness levels were associated with attenuated differential methylation and transcription during aging. Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger state after exercise training interventions, while the transcriptome shifted toward an older state after forced muscle disuse. We demonstrate that exercise training targets many of the age-related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best combination of therapeutics and exercise regimes to optimize longevity.


Asunto(s)
Epigenoma , Transcriptoma , Humanos , Transcriptoma/genética , Epigenoma/genética , Músculo Esquelético/metabolismo , Ejercicio Físico/fisiología , Perfilación de la Expresión Génica
15.
J Physiol ; 591(9): 2319-31, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23459753

RESUMEN

Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n = 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-(13)C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1-12 h recovery (88-148%, P < 0.02), but INT elicited greater MPS than PULSE and BOLUS (31-48%, P < 0.02). In general signalling showed a BOLUS>INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass.


Asunto(s)
Proteínas de la Leche/administración & dosificación , Proteínas Musculares/biosíntesis , Miofibrillas/metabolismo , Entrenamiento de Fuerza , Adulto , Aminoácidos/sangre , Ingestión de Alimentos , Humanos , Insulina/sangre , Masculino , Biosíntesis de Proteínas , Factores de Tiempo , Proteína de Suero de Leche , Adulto Joven
16.
Appl Physiol Nutr Metab ; 48(5): 411-416, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36802453

RESUMEN

We aimed to determine whether there was a relationship between pre-immobilization skeletal muscle size and the magnitude of muscle atrophy following 14 days of unilateral lower limb immobilization. Our findings (n = 30) show that pre-immobilization leg fat-free mass and quadriceps cross-sectional area (CSA) were unrelated to the magnitude of muscle atrophy. However, sex-based differences may be present, but confirmatory work is required. In women, pre-immobilization leg fat-free mass and CSA were associated with changes in quadriceps CSA after immobilization (n = 9, r2 = 0.54-0.68; P < 0.05). The extent of muscle atrophy is not affected by initial muscle mass, but there is potential for sex-based differences.


Asunto(s)
Inmovilización , Fuerza Muscular , Humanos , Femenino , Inmovilización/efectos adversos , Inmovilización/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/patología , Atrofia Muscular/etiología , Músculo Cuádriceps/diagnóstico por imagen
17.
J Sci Med Sport ; 25(6): 460-465, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35272936

RESUMEN

OBJECTIVES: To characterise the assessment and management practices employed by Sports Dietitians when assessing and managing athletes at risk of low energy availability (LEA). DESIGN: 55 Sports Dietitians participated in an online questionnaire that captured the typical methods used to identify and manage LEA in athletic populations. METHODS: The questionnaire consisted of 27 questions which explored common methods used to identify and manage LEA, as well as dietary methods employed and barriers experienced by Sports Dietitians. RESULTS: Broadly, the top 3 nutrition-related priorities for respondents were nutrition strategies to support training, competition, and recovery while 'LEA' was ranked fifth. 'Dietary intake', 'menstrual function' and 'training load (km/week)' were the primary methods used to assess LEA and respondents were 'confident' in their ability to correctly identify athletes at risk. Among support personnel, coaches were rarely a referral source for management of LEA but did present frequent communication difficulties. Respondents indicated athletes have concerns about undesirable changes in body composition when providing recommendations of increased energy intake for LEA management. CONCLUSIONS: Sport Dietitians appear to recognise and prioritise LEA management in athletes, but assessments are limited to dietary intake and training load (km/week); with collaborative approaches to LEA management lacking. Sports Dietitian may be overconfident in their ability to identify LEA as only a limited number of assessment methods are commonly used. Access to reliable assessments methods and collaborative management approaches are needed to improve athlete care when suspected of LEA.


Asunto(s)
Nutricionistas , Deportes , Atletas , Ingestión de Energía , Humanos , Fenómenos Fisiológicos en la Nutrición Deportiva , Encuestas y Cuestionarios
18.
Int J Sports Physiol Perform ; 17(6): 917-925, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35240576

RESUMEN

PURPOSE: The effect of acetaminophen (ACT, also known as paracetamol) on endurance performance in hot and humid conditions has been shown previously in recreationally active populations. The aim of this study was to determine the effect of ACT on physiological and perceptual variables during steady-state and time-trial cycling performance of trained triathletes in hot and humid conditions. METHODS: In a randomized, double-blind crossover design, 11 triathletes completed ∼60 minutes steady-state cycling at 63% peak power output followed by a time trial (7 kJ·kg body mass-1, ∼30 min) in hot and humid conditions (∼30°C, ∼69% relative humidity) 60 minutes after consuming either 20 mg·kg body mass-1 ACT or a color-matched placebo. Time-trial completion time, gastrointestinal temperature, skin temperature, thermal sensation, thermal comfort, rating of perceived exertion, and fluid balance were recorded throughout each session. RESULTS: There was no difference in performance in the ACT trial compared with placebo (P = .086, d = 0.57), nor were there differences in gastrointestinal and skin temperature, thermal sensation and comfort, or fluid balance between trials. CONCLUSION: In conclusion, there was no effect of ACT (20 mg·kg body mass-1) ingestion on physiology, perception, and performance of trained triathletes in hot and humid conditions, and existing precooling and percooling strategies appear to be more appropriate for endurance cycling performance in the heat.


Asunto(s)
Acetaminofén , Rendimiento Atlético , Ciclismo , Calor , Humedad , Acetaminofén/farmacología , Rendimiento Atlético/fisiología , Ciclismo/fisiología , Temperatura Corporal/efectos de los fármacos , Temperatura Corporal/fisiología , Estudios Cruzados , Método Doble Ciego , Humanos
19.
PLoS One ; 17(9): e0273925, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36048851

RESUMEN

Skeletal muscle unloading due to joint immobilization induces muscle atrophy, which has primarily been attributed to reductions in protein synthesis in humans. However, no study has evaluated the skeletal muscle proteome response to limb immobilization using SWATH proteomic methods. This study characterized the shifts in individual muscle protein abundance and corresponding gene sets after 3 and 14 d of unilateral lower limb immobilization in otherwise healthy young men. Eighteen male participants (25.4 ±5.5 y, 81.2 ±11.6 kg) underwent 14 d of unilateral knee-brace immobilization with dietary provision and following four-weeks of training to standardise acute training history. Participant phenotype was characterized before and after 14 days of immobilization, and muscle biopsies were obtained from the vastus lateralis at baseline (pre-immobilization) and at 3 and 14 d of immobilization for analysis by SWATH-MS and subsequent gene-set enrichment analysis (GSEA). Immobilization reduced vastus group cross sectional area (-9.6 ±4.6%, P <0.0001), immobilized leg lean mass (-3.3 ±3.9%, P = 0.002), unilateral 3-repetition maximum leg press (-15.6 ±9.2%, P <0.0001), and maximal oxygen uptake (-2.9 ±5.2%, P = 0.044). SWATH analyses consistently identified 2281 proteins. Compared to baseline, two and 99 proteins were differentially expressed (FDR <0.05) after 3 and 14 d of immobilization, respectively. After 14 d of immobilization, 322 biological processes were different to baseline (FDR <0.05, P <0.001). Most (77%) biological processes were positively enriched and characterized by cellular stress, targeted proteolysis, and protein-DNA complex modifications. In contrast, mitochondrial organization and energy metabolism were negatively enriched processes. This study is the first to use data independent proteomics and GSEA to show that unilateral lower limb immobilization evokes mitochondrial dysfunction, cellular stress, and proteolysis. Through GSEA and network mapping, we identify 27 hub proteins as potential protein/gene candidates for further exploration.


Asunto(s)
Fuerza Muscular , Músculo Esquelético , Proteoma , Humanos , Inmovilización/fisiología , Extremidad Inferior/fisiología , Masculino , Mitocondrias/metabolismo , Fuerza Muscular/fisiología , Músculo Esquelético/metabolismo , Atrofia Muscular/patología , Proteolisis , Proteoma/metabolismo , Proteómica , Músculo Cuádriceps/fisiología , Estrés Fisiológico
20.
PLoS One ; 17(1): e0261723, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35025912

RESUMEN

Skeletal muscle atrophy is a physiological response to disuse, aging, and disease. We compared changes in muscle mass and the transcriptome profile after short-term immobilization in a divergent model of high and low responders to endurance training to identify biological processes associated with the early atrophy response. Female rats selectively bred for high response to endurance training (HRT) and low response to endurance training (LRT; n = 6/group; generation 19) underwent 3 day hindlimb cast immobilization to compare atrophy of plantaris and soleus muscles with line-matched controls (n = 6/group). RNA sequencing was utilized to identify Gene Ontology Biological Processes with differential gene set enrichment. Aerobic training performed prior to the intervention showed HRT improved running distance (+60.6 ± 29.6%), while LRT were unchanged (-0.3 ± 13.3%). Soleus atrophy was greater in LRT vs. HRT (-9.0 ±8.8 vs. 6.2 ±8.2%; P<0.05) and there was a similar trend in plantaris (-16.4 ±5.6% vs. -8.5 ±7.4%; P = 0.064). A total of 140 and 118 biological processes were differentially enriched in plantaris and soleus muscles, respectively. Soleus muscle exhibited divergent LRT and HRT responses in processes including autophagy and immune response. In plantaris, processes associated with protein ubiquitination, as well as the atrogenes (Trim63 and Fbxo32), were more positively enriched in LRT. Overall, LRT demonstrate exacerbated atrophy compared to HRT, associated with differential gene enrichments of biological processes. This indicates that genetic factors that result in divergent adaptations to endurance exercise, may also regulate biological processes associated with short-term muscle unloading.


Asunto(s)
Entrenamiento Aeróbico/métodos , Suspensión Trasera/métodos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Transcriptoma/fisiología , Adaptación Fisiológica , Animales , Terapia por Ejercicio , Femenino , Biblioteca Genómica , Humanos , Masculino , Condicionamiento Físico Animal , Ratas , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA