RESUMEN
BACKGROUND: Malaria is an infectious disease caused by parasites of the genus Plasmodium, of which Plasmodium vivax and Plasmodium falciparum are the major species that cause the disease in humans. As there are relatively few alternatives for malaria treatment, it is necessary to search for new chemotherapeutic options. Colombia possesses a great diversity of plants, which are potential sources of new compounds of medical interest. Thus, in this study the antiplasmodial effect of extracts from two species of plants from the families Simaroubaceae and Picramniaceae (Picramnia latifolia and Picrolemma huberi) was evaluated in vitro and in vivo. These plants were chosen because they contain secondary metabolites with interesting medicinal effects. RESULTS: The ethanolic extracts of both species were highly active with IC50: 1.2 ± 0.19 µg/mL for P. latifolia and IC50: 0.05 ± 0.005 µg/mL for P. huberi. The P. latifolia extract had a stage specific effect on trophozoites and inhibited parasite growth in vivo by 52.1 ± 3.4%, evaluated at 1000 mg/kg in Balb/c mice infected with Plasmodium berghei. On the other hand, evaluated at 150 mg/kg body weight in the same murine model, the ethanolic extract from P. huberi had an antiplasmodial effect in all the asexual intraerythrocytic stages of P. falciparum FCR3 and inhibited the parasitic growth in 93 ± 32.9%. CONCLUSIONS: This is the first report of anti-malarial activity for these two species of plants. Thus, P. latifolia and P. huberi are potential candidates for the development of new drugs for treating malaria.
Asunto(s)
Antimaláricos/farmacología , Extractos Vegetales/farmacología , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Simaroubaceae/química , Animales , Ratones/parasitología , Ratones Endogámicos BALB C/parasitología , Especificidad de la EspecieRESUMEN
A new alkaloid, Canthin-6-one, Huberine (1), together with three known compounds including 1-Hydroxy-canthin-6-one (2), Canthin-6-one (3) and stigma sterol (4), were isolated from the stem bark of Picrolemma huberi. The isolation was achieved by chromatographic techniques and the purification was performed on a C18 column using acetonitrile/water (90:10, v/v) with 0.1% formic acid as the mobile phase. The structural elucidation was performed via spectroscopic methods, notably 1D- and 2D-NMR, UV, IR, MS and HRMS. The antiplasmodial activity of the compounds was studied.
Asunto(s)
Alcaloides/química , Carbolinas/química , Alcaloides Indólicos/química , Corteza de la Planta/química , Simaroubaceae/químicaRESUMEN
Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs.
Asunto(s)
Biomasa , Bosques , Modelos Teóricos , Árboles/crecimiento & desarrollo , Clima Tropical , América del SurRESUMEN
Higher levels of taxonomic and evolutionary diversity are expected to maximize ecosystem function, yet their relative importance in driving variation in ecosystem function at large scales in diverse forests is unknown. Using 90 inventory plots across intact, lowland, terra firme, Amazonian forests and a new phylogeny including 526 angiosperm genera, we investigated the association between taxonomic and evolutionary metrics of diversity and two key measures of ecosystem function: aboveground wood productivity and biomass storage. While taxonomic and phylogenetic diversity were not important predictors of variation in biomass, both emerged as independent predictors of wood productivity. Amazon forests that contain greater evolutionary diversity and a higher proportion of rare species have higher productivity. While climatic and edaphic variables are together the strongest predictors of productivity, our results show that the evolutionary diversity of tree species in diverse forest stands also influences productivity. As our models accounted for wood density and tree size, they also suggest that additional, unstudied, evolutionarily correlated traits have significant effects on ecosystem function in tropical forests. Overall, our pan-Amazonian analysis shows that greater phylogenetic diversity translates into higher levels of ecosystem function: tropical forest communities with more distantly related taxa have greater wood productivity.
Asunto(s)
Ecosistema , Madera , Bosques , Filogenia , Clima TropicalRESUMEN
Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage.
Asunto(s)
Biomasa , Bosques , Temperatura , Clima Tropical , Agua , Modelos Teóricos , América del SurRESUMEN
Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale.