Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO Rep ; 24(12): e56920, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37988244

RESUMEN

Ufmylation plays a crucial role in various cellular processes including DNA damage response, protein translation, and ER homeostasis. To date, little is known about how the enzymes responsible for ufmylation coordinate their action. Here, we study the details of UFL1 (E3) activity, its binding to UFC1 (E2), and its relation to UBA5 (E1), using a combination of structural modeling, X-ray crystallography, NMR, and biochemical assays. Guided by Alphafold2 models, we generate an active UFL1 fusion construct that includes its partner DDRGK1 and solve the crystal structure of this critical interaction. This fusion construct also unveiled the importance of the UFL1 N-terminal helix for binding to UFC1. The binding site suggested by our UFL1-UFC1 model reveals a conserved interface, and competition between UFL1 and UBA5 for binding to UFC1. This competition changes in the favor of UFL1 following UFM1 charging of UFC1. Altogether, our study reveals a novel, terminal helix-mediated regulatory mechanism, which coordinates the cascade of E1-E2-E3-mediated transfer of UFM1 to its substrate and provides new leads to target this modification.


Asunto(s)
Sitios de Unión , Cristalografía por Rayos X
2.
Artículo en Inglés | MEDLINE | ID: mdl-38980506

RESUMEN

INTRODUCTION: Different types of mastectomies leave different amounts of residual breast tissue. The significance of the residual breast volume (RBV) is not clear. Therefore, we developed an MRI tool that allows to easily assess the RBV. In this study we evaluated factors associated with RBV after skin or nipple sparing mastectomy (SSM/NSM) in breast cancer BRCA pathogenic variant (PV) carriers who underwent both therapeutic and risk reducing SSM/NSM and its relation to breast cancer outcomes using an innovative MRI-based tool. METHODS: Data of breast cancer BRCA PV who were treated between 2006 and 2020 were retrieved from of the oncogenetics unit databases. Only patients who underwent SSM/NSM and had a postoperative breast MRI available for analysis were included. Data collected included demographics, clinicopathological features, and outcomes. The MRI tool was developed by a breast cancer imaging laboratory. A logistic regression test and 95% confidence interval (CI) were used to assess the associated risk of increased RBV. A forward stepwise linear regression was used to correlate tumour-patient specific factors and RBV, and a Kaplan-Meier curve to show the probability of locoregional relapse. RESULTS: A total of 84 patients undergoing 89 mastectomies were included. At a median follow-up of 98 months, 5 local, 2 regional, and 4 distant recurrences were observed. RBV was not significantly related with breast cancer outcomes (p value = NS). A higher body mass index (BMI) was associated with a higher RBV (p < 0.0001). A larger number of involved axillary nodes was associated with a smaller RBV (p = 0.025). The RBV on the risk-reducing mastectomy side was significantly higher compared to the breast cancer side (p value = 0.007). Local recurrences occurred in the vicinity of the primary tumour.

3.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791190

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is more prevalent in post- compared to pre-menopausal women. The underlying mechanisms are not fully understood. Data in humans is confounded by age and co-morbidities. We investigated the effects of ovariectomy and estrogen replacement on the left ventricular (LV) gene expression of pro-inflammatory and pro-fibrotic factors involved in HFpEF and putative regulating miRNAs. Nine-week-old C57BL/6 female mice were subjected to ovariectomy (OVX) or SHAM operation. OVX and SHAM groups were sacrificed 1-, 6-, and 12-weeks post-surgery (T1/SHAM; T1/OVX; T6/SHAM; T6/OVX, T12/SHAM). 17ß-estradiol (E2) or vehicle (VEH) was then administered to the OVX groups for 6 weeks (T12/OVX/E2; T12/OVX/VEH). Another SHAM group was sacrificed 12-weeks post-surgery. RNA and miRNAs were extracted from the LV apex. An early 3-fold increase in the gene expression of IL-1α, IL-6, Mmp9, Mmp12, Col1α1, and Col3α1 was observed one-week post-surgery in T1/OVX vs. T1/SHAM, but not at later time points. miRNA-26a was lower in T1/OVX vs. T1/SHAM and was inversely correlated with Col1α1 and Col3α1 expression 1-week post-surgery (r = -0.79 p < 0.001; r = -0.6 p = 0.007). miRNAs-26a, 29b, and 133a were significantly higher, while Col1α1, Col3α1, IL-1α, IL-6, Tnfα, Mmp12, and FasL gene expression was significantly lower in E2- compared to vehicle-treated OVX mice. miRNA-26a was inversely correlated with Col3α1 in T12/OVX/ E2 (r = -0.56 p = 0.02). OVX triggered an early increase in the gene expression of pro-inflammatory and pro-fibrotic factors, highlighting the importance of the early phase post-cessation of ovarian function. E2 replacement therapy, even if it was not immediately initiated after OVX, reversed these unfavorable changes and upregulated cardiac miRNA-26a, previously unknown to be affected by menopausal status.


Asunto(s)
Colágeno Tipo I , Estradiol , Regulación de la Expresión Génica , Ventrículos Cardíacos , MicroARNs , Animales , Femenino , Ratones , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Estradiol/farmacología , Terapia de Reemplazo de Estrógeno , Regulación de la Expresión Génica/efectos de los fármacos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/efectos de los fármacos , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Ovariectomía , Regulación hacia Arriba/efectos de los fármacos
4.
J Biol Chem ; 297(3): 101024, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34343568

RESUMEN

Cytokinesis, the final step of mitosis, is mediated by an actomyosin contractile ring, the formation of which is temporally and spatially regulated following anaphase onset. Aurora-B is a member of the chromosomal passenger complex, which regulates various processes during mitosis; it is not understood, however, how Aurora-B is involved in cytokinesis. Here, we show that Aurora-B and myosin-IIB form a complex in vivo during telophase. Aurora-B phosphorylates the myosin-IIB rod domain at threonine 1847 (T1847), abrogating the ability of myosin-IIB monomers to form filaments. Furthermore, phosphorylation of myosin-IIB filaments by Aurora-B also promotes filament disassembly. We show that myosin-IIB possessing a phosphomimetic mutation at T1847 was unable to rescue cytokinesis failure caused by myosin-IIB depletion. Cells expressing a phosphoresistant mutation at T1847 had significantly longer intercellular bridges, implying that Aurora-B-mediated phosphorylation of myosin-IIB is important for abscission. We propose that myosin-IIB is a substrate of Aurora-B and reveal a new mechanism of myosin-IIB regulation by Aurora-B in the late stages of mitosis.


Asunto(s)
Aurora Quinasa B/metabolismo , Citocinesis/fisiología , Cadenas Pesadas de Miosina/metabolismo , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Fosforilación , Especificidad por Sustrato
5.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35806453

RESUMEN

Ufmylation is a posttranslational modification in which the modifier UFM1 is attached to target proteins. This conjugation requires the concerted work of three enzymes named UBA5, UFC1, and UFL1. Initially, UBA5 activates UFM1 in a process that ends with UFM1 attached to UBA5's active site Cys. Then, in a trans-thiolation reaction, UFM1 is transferred from UBA5 to UFC1, forming a thioester bond with the latter. Finally, with the help of UFL1, UFM1 is transferred to the final destination-a lysine residue on a target protein. Therefore, not surprisingly, deletion of one of these enzymes abrogates the conjugation process. However, how overexpression of these enzymes affects this process is not yet clear. Here we found, unexpectedly, that overexpression of UBA5, but not UFC1, damages the ability of cells to migrate, in a similar way to cells lacking UBA5 or UFC1. At the mechanistic level, we found that overexpression of UBA5 reverses the trans-thiolation reaction, thereby leading to a back transfer of UFM1 from UFC1 to UBA5. This, as seen in cells lacking UBA5, reduces the level of charged UFC1 and therefore harms the conjugation process. In contrast, co-expression of UBA5 with UFM1 abolishes this effect, suggesting that the reverse transfer of UFM1 from UFC1 to UBA5 depends on the level of free UFM1. Overall, our results propose that the cellular expression level of the UFM1 conjugation enzymes has to be tightly regulated to ensure the proper directionality of UFM1 transfer.


Asunto(s)
Enzimas Activadoras de Ubiquitina , Enzimas Ubiquitina-Conjugadoras , Fenotipo , Procesamiento Proteico-Postraduccional , Proteínas/química , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
6.
J Cell Sci ; 132(14)2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31315909

RESUMEN

An acto-myosin contractile ring, which forms after anaphase onset and is highly regulated in time and space, mediates cytokinesis, the final step of mitosis. The chromosomal passenger complex (CPC), composed of Aurora-B kinase, INCENP, borealin and survivin (also known as BIRC5), regulates various processes during mitosis, including cytokinesis. It is not understood, however, how CPC regulates cytokinesis. We show that survivin binds to non-muscle myosin II (NMII), regulating its filament assembly. Survivin and NMII interact mainly in telophase, and Cdk1 regulates their interaction in a mitotic-phase-specific manner, revealing the mechanism for the specific timing of survivin-NMII interaction during mitosis. The survivin-NMII interaction is indispensable for cytokinesis, and its disruption leads to multiple mitotic defects. We further show that only the survivin homodimer binds to NMII, attesting to the biological importance for survivin homodimerization. We suggest a novel function for survivin in regulating the spatio-temporal formation of the acto-NMII contractile ring during cytokinesis and we elucidate the role of Cdk1 in regulating this process.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Citocinesis , Miosina Tipo II/metabolismo , Survivin/metabolismo , Proteína Quinasa CDC2/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitosis , Modelos Biológicos , Miosina Tipo II/química , Fosforilación , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Telofase
7.
Clin Genet ; 98(4): 402-407, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32683677

RESUMEN

COG6-congenital disorder of glycosylation (COG6-CDG) is caused by biallelic mutations in COG6. To-date, 12 variants causing COG6-CDG in less than 20 patients have been reported. Using whole exome sequencing we identified two siblings with a novel homozygous deletion of 26 bp in COG6, creating a splicing variant (c.518_540 + 3del) and a shift in the reading frame. The phenotype of COG6-CDG includes growth and developmental retardation, microcephaly, liver and gastrointestinal disease, hypohydrosis and recurrent infections. We report two patients with novel phenotypic features including bowel malrotation and ambiguous genitalia, directing attention to the role of glycoprotein metabolism in the causation of disorders of sex development (DSD). Searching the glycomic literature, we identified 14 CDGs including males with DSD, a feature not previously accentuated. This study broadens the genetic and phenotypic spectrum of COG6-CDG and calls for increasing awareness to the central role of glycosylation processes in development of human sex and genitalia.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Trastornos Congénitos de Glicosilación/genética , Trastornos del Desarrollo Sexual/genética , Oxigenasas de Función Mixta/genética , Trastornos Congénitos de Glicosilación/mortalidad , Trastornos Congénitos de Glicosilación/fisiopatología , Trastornos del Desarrollo Sexual/mortalidad , Trastornos del Desarrollo Sexual/fisiopatología , Femenino , Glicosilación , Homocigoto , Humanos , Recién Nacido , Masculino , Mutación/genética , Fenotipo , Eliminación de Secuencia/genética , Hermanos , Secuenciación del Exoma
8.
BMC Med Ethics ; 21(1): 98, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33059675

RESUMEN

BACKGROUND: The Arab population in Israel is a minority ethnic group with its own distinct cultural subgroups. Minority populations are known to underutilize genetic tests and counseling services, thereby undermining the effectiveness of these services among such populations. However, the general and culture-specific reasons for this underutilization are not well defined. Moreover, Arab populations and their key cultural-religious subsets (Muslims, Christians, and Druze) do not reside exclusively in Israel, but are rather found as a minority group in many European and North American countries. Therefore, focusing on the Arab population in Israel allows for the examination of attitudes regarding genetic testing and counseling among this globally important ethnic minority population. METHODS: We used a qualitative research method, employing individual interviews with 18 women of childbearing age from three religious subgroups (i.e., Druze, Muslim, and Christian) who reside in the Acre district, along with focus group discussions with healthcare providers (HCPs; 9 nurses and 7 genetic counselors) working in the same geographical district. RESULTS: A general lack of knowledge regarding the goals and practice of genetic counseling resulting in negative preconceptions of genetic testing was identified amongst all counselees. Counselors' objective of respecting patient autonomy in decision-making, together with counselees' misunderstanding of genetic risk data, caused uncertainty, frustration, and distrust. In addition, certain interesting variations were found between the different religious subgroups regarding their attitudes to genetic counseling. CONCLUSIONS: The study highlights the miscommunications between HCPs, particularly counselors from the majority ethno-cultural group, and counselees from a minority ethno-cultural group. The need for nuanced understanding of the complex perspectives of minority ethno-cultural groups is also emphasized. Such an understanding may enhance the effectiveness of genetic testing and counseling among the Arab minority group while also genuinely empowering the personal autonomy of counselees from this minority group in Israel and other countries.


Asunto(s)
Asesoramiento Genético , Grupos Minoritarios , Árabes/genética , Consejo , Femenino , Pruebas Genéticas , Humanos , Israel , América del Norte , Investigación Cualitativa
9.
Reprod Biol Endocrinol ; 17(1): 30, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30845973

RESUMEN

BACKGROUD: In order to maximize In vitro fertilization (IVF) success rates in advanced- age patients, it has been suggested to favor the use of intracytoplasmic sperm injection (ICSI) over conventional insemination (CI), with the notion that ICSI would serve as a tool to overcome interference in sperm oocyte interaction and sperm oocyte penetration issues that can be related to maternal age and are not due to sperm abnormalities. We therefore aim to evaluate the role of ICSI in the treatment of non-male factor infertile patients aged ≥35 in terms of fertilization and top-quality embryo rates. METHODS: In this retrospective cohort study, data were collected and analyzed for all patients with non-male factor infertility, aged ≥35 treated, undergoing their first IVF cycle attempt with 6 or more oocytes yield, in whom a 50% ICSI-CI division was performed. RESULTS: Five hundreds and four oocytes were collected from 52 eligible patients. Overall, 245 oocytes underwent ICSI and 259 oocytes underwent CI. The fertilization rate was 71.0% following ICSI, compared to 50.1% in the CI treated oocytes (P < 0.001). The top quality embryo rate was 62.8% following ICSI compared to 45.5% following CI (P < 0.001). Subdividing the study population to two age groups revealed that the above differences remained significant in patients aged 35-39 yrs., whereas in those aged 40-45 yrs., the differences were non-significant but still inclined in favor of ICSI. CONCLUSIONS: This study favors the use of ICSI in the older IVF population in order to increase both the fertilization rate and the number of top quality embryos that result per IVF cycle. Further studies are needed to establish our observations and use ICSI as the preferred approach to overcome egg sperm abnormal interactions related to advanced maternal age.


Asunto(s)
Fertilización In Vitro/métodos , Infertilidad Femenina/terapia , Edad Materna , Adulto , Factores de Edad , Femenino , Fertilización , Humanos , Persona de Mediana Edad , Estudios Retrospectivos
10.
FASEB J ; 32(5): 2794-2802, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29295865

RESUMEN

All ubiquitin-like proteins (UBLs) undergo an activation process before their conjugation to target proteins. Although the steps required for the activation of UBLs are conserved and common to all UBLs, we have previously shown that the activation of the UBL, ubiquitin fold modifier 1 (UFM1) by the E1, Ufm1 modifier-activating enzyme 5 (UBA5) is executed in a trans-binding mechanism, not observed in any other E1. In this study, we explored the necessity of that mechanism for UFM1 activation and found that it is needed not only for UFM1 binding to UBA5 but also for stabilizing the UBA5 homodimer. Although UBA5 functions as a dimer, in solution it behaves as a weak dimer. Dimerization of UBA5 is required for ATP binding; therefore, stabilization of the dimer by UFM1 enhances ATP binding. Our results make a connection between the binding of UFM1 to UBA5 and the latter's affinity to ATP, so we propose a novel mechanism for the regulation of ATP's binding to E1.-Mashahreh, B., Hassouna, F., Soudah, N., Cohen-Kfir, E., Strulovich, R., Haitin, Y., Wiener, R. Trans-binding of UFM1 to UBA5 stimulates UBA5 homodimerization and ATP binding.


Asunto(s)
Adenosina Trifosfato/química , Multimerización de Proteína , Proteínas/química , Enzimas Activadoras de Ubiquitina/química , Adenosina Trifosfato/metabolismo , Humanos , Unión Proteica , Estructura Cuaternaria de Proteína , Proteínas/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo
11.
J Biol Chem ; 291(4): 2033-2042, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26601948

RESUMEN

The deubiquitinating enzyme associated molecule with the SH3 domain of STAM (AMSH) is crucial for the removal of ubiquitin molecules during receptor-mediated endocytosis and lysosomal receptor sorting. AMSH interacts with signal transducing adapter molecule (STAM) 1 or 2, which enhances the activity of AMSH through an unknown mechanism. This stimulation is dependent on the ubiquitin-interacting motif of STAM. Here we investigate the specific mechanism of AMSH stimulation by STAM proteins and the role of the STAM Vps27/Hrs/STAM domain. We show that, in the presence of STAM, the length of the ubiquitin chains affects the apparent cleavage rate. Through measurement of the chain cleavage kinetics, we found that, although the kcat of Lys(63)-linked ubiquitin chain cleavage was comparable for di- and tri-ubiquitin, the Km value was lower for tri-ubiquitin. This increased affinity for longer chains was dependent on the Vps27/Hrs/STAM domain of STAM and required that the substrate ubiquitin chain contain homogenous Lys(63)-linkages. In addition, STAM directed AMSH cleavage toward the distal isopeptide bond in tri-ubiquitin chains. Finally, we generated a structural model of AMSH-STAM to show how the complex binds Lys(63)-linked ubiquitin chains and cleaves at the distal end. These data show how a deubiquitinating enzyme-interacting protein dictates the efficiency and specificity of substrate cleavage.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencias de Aminoácidos , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Humanos , Cinética , Fosfoproteínas/genética , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Ubiquitina Tiolesterasa/genética
12.
J Cell Sci ; 127(Pt 2): 295-304, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24213535

RESUMEN

Non-muscle myosin IIA (NMII-A) and the tumor suppressor lethal giant larvae 1 (Lgl1) play a central role in the polarization of migrating cells. Mammalian Lgl1 interacts directly with NMII-A, inhibiting its ability to assemble into filaments in vitro. Lgl1 also regulates the cellular localization of NMII-A, the maturation of focal adhesions and cell migration. In Drosophila, phosphorylation of Lgl affects its association with the cytoskeleton. Here we show that phosphorylation of mammalian Lgl1 by aPKCζ prevents its interaction with NMII-A both in vitro and in vivo, and affects its inhibition of NMII-A filament assembly. Phosphorylation of Lgl1 affects its cellular localization and is important for the cellular organization of the acto-NMII cytoskeleton. We further show that Lgl1 forms two distinct complexes in vivo, Lgl1-NMIIA and Lgl1-Par6α-aPKCζ, and that the formation of these complexes is affected by the phosphorylation state of Lgl1. The complex Lgl1-Par6α-aPKCζ resides in the leading edge of the cell. Finally, we show that aPKCζ and NMII-A compete to bind directly to Lgl1 at the same domain. These results provide new insights into the mechanism regulating the interaction between Lgl1, NMII-A, Par6α and aPKCζ in polarized migrating cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Glicoproteínas/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Unión Competitiva , Citoesqueleto/metabolismo , Glicoproteínas/química , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Células 3T3 NIH , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Seudópodos/metabolismo , Proteínas Supresoras de Tumor/química
13.
Osteoporos Int ; 27(7): 2373-2378, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26902093

RESUMEN

UNLABELLED: To investigate the role of Sirtuin1 in osteoporosis, Sirtuin1 was determined at the femoral neck in female patients undergoing hip operation for fractured hip or osteoarthritis. Reduced Sirtuin1 was found in osteoporotic patients. Pharmacologic activation of Sirtuin1 reduced sclerostin, an inhibitor of bone formation. Activation of Sirtuin1 may be a new direction to generate therapies for osteoporosis. INTRODUCTION: The aim of the study are to investigate the role of Sirtuin1 (Sirt1), an anti-aging factor and a player in age-associated diseases, in osteoporotic hip fractures, and test the hypothesis that Sirt1 is a negative regulator of sclerostin, a bone formation inhibitor, in human femoral bone marrow mesenchymal cells (BM-MSCs). METHODS: Sirt1 and sclerostin were determined by western blot in bone samples obtained intra-operatively from the inferior medial cortex of the femoral neck (calcar region) in female patients undergoing partial hip replacement for fractured neck of femur (N = 10) or hip replacement for osteoarthritis (N = 8) (mean ± SD age 81 ± 8.1 vs. 68 ± 9.3 years; BMI 26.2 ± 3.6 vs. 25.9 ± 7.1 kg/m(2) in osteoporotic and osteoarthritis patients). Calcar thickness and femoral bone mineral density (BMD) were determined preoperatively by X-ray using a digital TraumaCad(™) software and DEXA. Femoral BM-MSCs were collected intra-operatively and treated with SRT3025, a Sirt1 activator. Sclerostin and dentin matrix acidic phosphoprotein (DMP1) were determined by western blot and messenger RNA (mRNA) expression of Lef1 and DMP1 was evaluated by quantitative real-time PCR. RESULTS: Osteoporotic (OP) patients had reduced cortical thickness, femoral neck, and total hip BMD compared to osteoarthritis (OA) patients. Calcar Sirt1 expression was significantly reduced, while sclerostin was markedly increased in OP compared to OA patients. Sirt1 and sclersotin expressions were inversely correlated (r = -0.49, P = 0.047). SRT3025 administration down-regulated sclerostin and up-regulated DMP1 protein level and increased LEF1 and DMP1 mRNA expressions in OP patient-derived BM-MSCs. CONCLUSIONS: Reduced femoral neck Sirt1 may play a role in osteoporotic hip fractures in part via influencing local sclerostin expression. The therapeutic potential of Sirt1 activation in osteoporosis warrants further investigation.


Asunto(s)
Cuello Femoral/metabolismo , Fracturas de Cadera/metabolismo , Fracturas Osteoporóticas/metabolismo , Sirtuina 1/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Anciano , Anciano de 80 o más Años , Artroplastia de Reemplazo de Cadera , Densidad Ósea , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Marcadores Genéticos , Humanos , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Osteoartritis/cirugía , Osteoporosis/cirugía , Fosfoproteínas/metabolismo
15.
Front Endocrinol (Lausanne) ; 13: 1032262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568088

RESUMEN

Introduction: Sirtuin 1 (SIRT1) is a key player in aging and metabolism and regulates bone mass and architecture. Sexual dimorphism in skeletal effects of SIRT1 has been reported, with an unfavorable phenotype primarily in female mice. Methods: To investigate the mechanisms of gender differences in SIRT1 skeletal effect, we investigated femoral and vertebral cortical and cancellous bone in global Sirt1 haplo-insufficient 129/Sv mice aged 2,7,12 months lacking Sirt1 exons 5,6,7 (Sirt1+/Δ ) and their wild type (WT) counterparts. Results: In females, femoral bone mineral content, peak cortical thickness, and trabecular bone volume (BV/TV%), number and thickness were significantly lower in Sirt1+/Δ compared to WT mice. Increased femoral cortical porosity was observed in 7-month-old Sirt1+/Δ compared to WT female mice, accompanied by reduced biomechanical strength. No difference in vertebral indices was detected between Sirt1+/Δ and WT female mice. SIRT1 decreased with aging in WT female mice and was lower in vertebrae and femur in 18- and 30- versus 3-month-old 129/Sv and C57BL/6J female mice, respectively. Decreased bone estrogen receptor alpha (ERα) was observed in Sirt1+/Δ compared to WT female mice and was significantly higher in Sirt1 over-expressing C3HT101/2 murine mesenchymal stem cells. In males no difference in femoral indices was detected in Sirt1+/Δ versus WT mice, however vertebral BV/TV%, trabecular number and thickness were higher in Sirt1+/Δ vs. WT mice. No difference in androgen receptor (AR) was detected in bone in Sirt1+/Δ vs. WT male mice. Bone SIRT1 was significantly lower in male compared to female WT mice, suggesting that SIRT1 maybe more significant in female than male skeleton. Discussion: These findings demonstrate that 50% reduction in SIRT1 is sufficient to induce the hallmarks of skeletal aging namely, decreased cortical thickness and increased porosity in female mice, highlighting the role of SIRT1 as a regulator of cortical bone quantity and quality. The effects of SIRT1 in cortical bone are likely mediated in part by its regulation of ERα. The age-associated decline in bone SIRT1 positions SIRT1 as a potential therapeutic target to ameliorate age-related cortical bone deterioration in females. The crosstalk between ERα, AR and SIRT1 in the bone microenvironment remains to be further investigated.


Asunto(s)
Hueso Cortical , Receptor alfa de Estrógeno , Osteoporosis , Sirtuina 1 , Animales , Femenino , Masculino , Ratones , Hueso Cortical/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Ratones Endogámicos C57BL , Porosidad , Sirtuina 1/genética , Osteoporosis/genética , Osteoporosis/metabolismo
16.
Mol Metab ; 60: 101482, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35364299

RESUMEN

OBJECTIVE: Menopause is associated with visceral adiposity, hepatic steatosis and increased risk for cardiovascular disease. As estrogen replacement therapy is not suitable for all postmenopausal women, a need for alternative therapeutics and biomarkers has emerged. METHODS: 9-week-old C57BL/6 J female mice were subjected to ovariectomy (OVX) or SHAM surgery (n = 10 per group), fed a standard diet and sacrificed 6- & 12 weeks post-surgery. RESULTS: Increased weight gain, hepatic triglyceride content and changes in hepatic gene expression of Cyp17a1, Rgs16, Fitm1 as well as Il18, Rares2, Retn, Rbp4 in mesenteric visceral adipose tissue (VAT) were observed in OVX vs. SHAM. Liver RNA-sequencing 6-weeks post-surgery revealed changes in genes and microRNAs involved in fat metabolism in OVX vs. SHAM mice. Energy Homeostasis Associated gene (Enho) coding for the hepatokine adropin was significantly reduced in OVX mice livers and strongly inversely correlated with weight gain (r = -0.7 p < 0.001) and liver triglyceride content (r = -0.4, p = 0.04), with a similar trend for serum adropin. In vitro, Enho expression was tripled by 17ß-estradiol in BNL 1 ME liver cells with increased adropin in supernatant. Analysis of open-access datasets revealed increased hepatic Enho expression in estrogen treated OVX mice and estrogen dependent ERα binding to Enho. Treatment of 5-month-old OVX mice with Adropin (i.p. 450 nmol/kg/twice daily, n = 4,5 per group) for 6-weeks reversed adverse adipokine gene expression signature in VAT, with a trended increase in lean body mass and decreased liver TG content with upregulation of Rgs16. CONCLUSIONS: OVX is sufficient to induce deranged metabolism in adult female mice. Hepatic adropin is regulated by estrogen, negatively correlated with adverse OVX-induced metabolic phenotypes, which were partially reversed with adropin treatment. Adropin should be further explored as a potential therapeutic target and biomarker for menopause-related metabolic derangement.


Asunto(s)
Estrógenos , Hígado , Animales , Estrógenos/metabolismo , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Fenotipo , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Triglicéridos/metabolismo , Aumento de Peso
17.
Front Immunol ; 13: 933347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36798518

RESUMEN

Intramuscularly administered vaccines stimulate robust serum neutralizing antibodies, yet they are often less competent in eliciting sustainable "sterilizing immunity" at the mucosal level. Our study uncovers a strong temporary neutralizing mucosal component of immunity, emanating from intramuscular administration of an mRNA vaccine. We show that saliva of BNT162b2 vaccinees contains temporary IgA targeting the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus-2 spike protein and demonstrate that these IgAs mediate neutralization. RBD-targeting IgAs were found to associate with the secretory component, indicating their bona fide transcytotic origin and their polymeric multivalent nature. The mechanistic understanding of the high neutralizing activity provided by mucosal IgA, acting at the first line of defense, will advance vaccination design and surveillance principles and may point to novel treatment approaches and new routes of vaccine administration and boosting.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , ARN Mensajero , Inmunoglobulina A
18.
Nat Commun ; 12(1): 5708, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588452

RESUMEN

Ufmylation is a post-translational modification essential for regulating key cellular processes. A three-enzyme cascade involving E1, E2 and E3 is required for UFM1 attachment to target proteins. How UBA5 (E1) and UFC1 (E2) cooperatively activate and transfer UFM1 is still unclear. Here, we present the crystal structure of UFC1 bound to the C-terminus of UBA5, revealing how UBA5 interacts with UFC1 via a short linear sequence, not observed in other E1-E2 complexes. We find that UBA5 has a region outside the adenylation domain that is dispensable for UFC1 binding but critical for UFM1 transfer. This region moves next to UFC1's active site Cys and compensates for a missing loop in UFC1, which exists in other E2s and is needed for the transfer. Overall, our findings advance the understanding of UFM1's conjugation machinery and may serve as a basis for the development of ufmylation inhibitors.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Dominio Catalítico/genética , Humanos , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/genética , Proteínas/genética , Proteínas/aislamiento & purificación , Proteínas/ultraestructura , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/aislamiento & purificación , Enzimas Activadoras de Ubiquitina/ultraestructura , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/aislamiento & purificación , Enzimas Ubiquitina-Conjugadoras/ultraestructura , Difracción de Rayos X
19.
Birth Defects Res ; 112(4): 316-320, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32115902

RESUMEN

BACKGROUND: Isolated populations with high rates of consanguinity and genetic disorders can be found in most parts of the world. The aim of our paper was to highlight the unique challenges faced in genetic counseling for such patients and to discuss the ways to facilitate the difficulties, with an emphasis on the crucial role of electronic medical records (EMR). CASE: We report a couple presenting with elevated maternal alpha-fetoprotein in three pregnancies, in which an erroneous diagnosis of epidermolysis bullosa was established in the past and carried along through several years. The live born proband had no evidence of skin disease; however, soon after birth she was diagnosed with congenital nephrotic syndrome. Sequencing of NPHS1 gene yielded a homozygous likely pathogenic genetic variant c.2104G > A (p.Gly702Arg). Population screening performed in the village of residence revealed a carrier frequency of 1-47. This high frequency justified including testing for the founder genetic variant in the national program for population screening. CONCLUSIONS: Our report highlights the caution, suspicion and time investment which should be practiced and addressed in genetic counseling of high-risk isolated populations. Using EMR may facilitate reaching the correct diagnosis, enable accurate genetic counseling and provide information for decision-making to the couples, as well as "save" a large community from devastating diseases.


Asunto(s)
Asesoramiento Genético , Síndrome Nefrótico , Consanguinidad , Familia , Femenino , Humanos , Tamizaje Masivo , Embarazo
20.
Artículo en Inglés | MEDLINE | ID: mdl-30873124

RESUMEN

Bone marrow adipose tissue (MAT) is influenced by nutritional cues, and participates in whole body energy metabolism. To investigate the role of Sirtuin1 (Sirt1), a key player in metabolism, in MAT, marrow adiposity was evaluated in inbred 5-month-old 129/Sv Sirt1 haplo-insufficient (Sirt1 Δ/+) and wild type (WT) mice. Decreased expression of the thermogenic genes: Prdm16, Pgc1α, Foxc2, Dio2, and ß3AR was detected in whole tibiae derived from Sirt1 Δ/+ compared to WT female mice. Similarly, decreased expression of Prdm16 and Pgc1α was observed in primary bone marrow mesenchymal stem cell (BM-MSC) cultures obtained from Sirt1 Δ/+ compared to WT female mice, suggesting a cell autonomous effect of Sirt1 in BM-MSCs. In vitro, Sirt1 over-expression in the mesenchymal embryonic fibroblast stem cell line C3HT101/2 increased Pgc1α and Prdm16 protein level. Similarly, pharmacologic activation of Sirt1 by SRT3025 increased Foxc2, Pgc1α, Dio2, Tfam, and Cyc1 expression while inhibition of Sirt1 by EX527 down-regulated UCP1 in C3HT101/2 cells. Importantly, in human femoral BM-MSCs obtained from female patients undergoing hip operations for fracture or osteoarthritis, Sirt1 activation by SRT3025 increased PGC1α mRNA and protein level. Blocking sclerostin, an inhibitor of the WNT pathway and a Sirt1 target, by the monoclonal humanized antibody (Sc-AbII), stimulated ß3AR, PRDM16, and UCP1 gene expression, and increased PGC1α protein level. These results show that Sirt1 stimulates a thermogenic gene program in marrow adipocytes in mice and humans via PGC1α activation and sclerostin inhibition. The implications of these findings to bone health, hematopoiesis and whole body energy metabolism remain to be investigated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA