Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
PLoS Biol ; 22(4): e3002602, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38669296

RESUMEN

Mitofusins are large GTPases that trigger fusion of mitochondrial outer membranes. Similarly to the human mitofusin Mfn2, which also tethers mitochondria to the endoplasmic reticulum (ER), the yeast mitofusin Fzo1 stimulates contacts between Peroxisomes and Mitochondria when overexpressed. Yet, the physiological significance and function of these "PerMit" contacts remain unknown. Here, we demonstrate that Fzo1 naturally localizes to peroxisomes and promotes PerMit contacts in physiological conditions. These contacts are regulated through co-modulation of Fzo1 levels by the ubiquitin-proteasome system (UPS) and by the desaturation status of fatty acids (FAs). Contacts decrease under low FA desaturation but reach a maximum during high FA desaturation. High-throughput genetic screening combined with high-resolution cellular imaging reveal that Fzo1-mediated PerMit contacts favor the transit of peroxisomal citrate into mitochondria. In turn, citrate enters the TCA cycle to stimulate the mitochondrial membrane potential and maintain efficient mitochondrial fusion upon high FA desaturation. These findings thus unravel a mechanism by which inter-organelle contacts safeguard mitochondrial fusion.


Asunto(s)
Mitocondrias , Dinámicas Mitocondriales , Peroxisomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Peroxisomas/metabolismo , Dinámicas Mitocondriales/fisiología , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ácidos Grasos/metabolismo , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ciclo del Ácido Cítrico , Potencial de la Membrana Mitocondrial/fisiología , Membranas Mitocondriales/metabolismo , Humanos
2.
PLoS Genet ; 15(3): e1008047, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30875368

RESUMEN

Large GTPases of the Dynamin Related Proteins (DRP) family shape lipid bilayers through membrane fission or fusion processes. Despite the highly organized photosynthetic membranes of thylakoids, a single DRP is known to be targeted inside the chloroplast. Fzl from the land plant Arabidopsis thaliana is inserted in the inner envelope and thylakoid membranes to regulate their morphology. Fzl may promote the fusion of thylakoids but this remains to be proven. Moreover, the physiological requirement for fusing thylakoids is currently unknown. Here, we find that the unicellular microalga Chlamydomonas reinhardtii encodes an Fzl ortholog (CrFzl) that is localized in the chloroplast where it is soluble. To explore its function, the CRISPR/Cas9 technology was employed to generate multiple CrFzl knock out strains. Phenotypic analyzes revealed a specific requirement of CrFzl for survival upon light stress. Consistent with this, strong irradiance lead to increased photoinhibition of photosynthesis in mutant cells. Fluorescence and electron microscopy analysis demonstrated that upon exposure to high light, CrFzl mutants show defects in chloroplast morphology but also large cytosolic vacuoles in close contact with the plastid. We further observe that strong irradiance induces an increased recruitment of the DRP to thylakoid membranes. Most importantly, we show that CrFzl is required for the fusion of thylakoids during mating. Together, our results suggest that thylakoids fusion may be necessary for resistance to light stress.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , GTP Fosfohidrolasas/metabolismo , Tilacoides/metabolismo , Proteínas Algáceas/genética , Sistemas CRISPR-Cas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efectos de la radiación , Cloroplastos/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfohidrolasas/genética , Técnicas de Inactivación de Genes , Luz , Fusión de Membrana , Microscopía Electrónica de Transmisión , Mutación , Procesos Fototróficos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estrés Fisiológico , Tilacoides/efectos de la radiación , Tilacoides/ultraestructura
4.
J Membr Biol ; 252(4-5): 293-306, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31485701

RESUMEN

Mitochondria are dynamic organelles characterized by an ultrastructural organization which is essential in maintaining their quality control and ensuring functional efficiency. The complex mitochondrial network is the result of the two ongoing forces of fusion and fission of inner and outer membranes. Understanding the functional details of mitochondrial dynamics is physiologically relevant as perturbations of this delicate equilibrium have critical consequences and involved in several neurological disorders. Molecular actors involved in this process are large GTPases from the dynamin-related protein family. They catalyze nucleotide-dependent membrane remodeling and are widely conserved from bacteria to higher eukaryotes. Although structural characterization of different family members has contributed in understanding molecular mechanisms of mitochondrial dynamics in more detail, the complete structure of some members as well as the precise assembly of functional oligomers remains largely unknown. As increasing structural data become available, the domain modularity across the dynamin superfamily emerged as a foundation for transfering the knowledge towards less characterized members. In this review, we will first provide an overview of the main actors involved in mitochondrial dynamics. We then discuss recent example of computational methodologies for the study of mitofusin oligomers, and present how the usage of integrative modeling in conjunction with biochemical data can be an asset in progressing the still challenging field of membrane dynamics.


Asunto(s)
Fusión de Membrana , Mitocondrias , Dinámicas Mitocondriales , Proteínas de Transporte de Membrana Mitocondrial , Membranas Mitocondriales , Animales , Humanos , Mitocondrias/química , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo
5.
J Cell Sci ; 124(Pt 9): 1403-10, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21502136

RESUMEN

The ability of cells to respire requires that mitochondria undergo fusion and fission of their outer and inner membranes. The means by which levels of fusion 'machinery' components are regulated and the molecular details of how fusion occurs are largely unknown. In Saccharomyces cerevisiae, a central component of the mitochondrial outer membrane (MOM) fusion machinery is the mitofusin Fzo1, a dynamin-like GTPase. We demonstrate that an early step in fusion, mitochondrial tethering, is dependent on the Fzo1 GTPase domain. Furthermore, the ubiquitin ligase SCF(Mdm30) (a SKP1-cullin-1-F-box complex that contains Mdm30 as the F-box protein), which targets Fzo1 for ubiquitylation and proteasomal degradation, is recruited to Fzo1 as a consequence of a GTPase-domain-dependent alteration in the mitofusin. Moreover, evidence is provided that neither Mdm30 nor proteasome activity are necessary for tethering of mitochondria. However, both Mdm30 and proteasomes are critical for MOM fusion. To better understand the requirement for the ubiquitin-proteasome system in mitochondrial fusion, we used the N-end rule system of degrons and determined that ongoing degradation of Fzo1 is important for mitochondrial morphology and respiration. These findings suggest a sequence of events in early mitochondrial fusion where Fzo1 GTPase-domain-dependent tethering leads to recruitment of SCF(Mdm30) and ubiquitin-mediated degradation of Fzo1, which facilitates mitochondrial fusion.


Asunto(s)
Proteínas F-Box/metabolismo , GTP Fosfohidrolasas/metabolismo , Fusión de Membrana/fisiología , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas F-Box/química , Proteínas F-Box/genética , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Immunoblotting , Inmunoprecipitación , Fusión de Membrana/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Unión Proteica , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
Biomolecules ; 13(9)2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37759741

RESUMEN

Mitochondria are highly dynamic organelles that constantly undergo fusion and fission events to maintain their shape, distribution and cellular function. Mitofusin 1 and 2 proteins are two dynamin-like GTPases involved in the fusion of outer mitochondrial membranes (OMM). Mitofusins are anchored to the OMM through their transmembrane domain and possess two heptad repeat domains (HR1 and HR2) in addition to their N-terminal GTPase domain. The HR1 domain was found to induce fusion via its amphipathic helix, which interacts with the lipid bilayer structure. The lipid composition of mitochondrial membranes can also impact fusion. However, the precise mode of action of lipids in mitochondrial fusion is not fully understood. In this study, we examined the role of the mitochondrial lipids phosphatidylethanolamine (PE), cardiolipin (CL) and phosphatidic acid (PA) in membrane fusion induced by the HR1 domain, both in the presence and absence of divalent cations (Ca2+ or Mg2+). Our results showed that PE, as well as PA in the presence of Ca2+, effectively stimulated HR1-mediated fusion, while CL had a slight inhibitory effect. By considering the biophysical properties of these lipids in the absence or presence of divalent cations, we inferred that the interplay between divalent cations and specific cone-shaped lipids creates regions with packing defects in the membrane, which provides a favorable environment for the amphipathic helix of HR1 to bind to the membrane and initiate fusion.


Asunto(s)
Fusión de Membrana , Mitocondrias , Cationes Bivalentes , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , GTP Fosfohidrolasas/metabolismo , Lípidos
7.
Methods Mol Biol ; 2602: 191-204, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36446976

RESUMEN

The ATG8 family of proteins regulates the autophagy process from the autophagosome maturation and cargo recruitment up to degradation. Autophagy dysfunction is involved in the development of multiple diseases. The LC3 interacting region (LIR)-based molecular traps have been designed to isolate endogenous ATG8 proteins and their interactors in order to facilitate the study of selective autophagy events. Here, we summarize protocols describing LC3 traps and sample preparation as well as adaptations for the analysis of ATG8 proteins in different biological models. This protocol was optimized to prepare affinity columns, reduce background, and improve the protein recovery to be analyzed by immunodetection with antibodies recognizing proteins of interest.


Asunto(s)
Aclimatación , Macroautofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Anticuerpos , Autofagia
8.
Biochim Biophys Acta Bioenerg ; 1863(8): 148913, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36057374

RESUMEN

Mitochondria assemble in a highly dynamic network where interconnected tubules evolve in length and size through regulated cycles of fission and fusion of mitochondrial membranes thereby adapting to cellular needs. Mitochondrial fusion and fission processes are mediated by specific sets of mechano-chemical large GTPases that belong to the Dynamin-Related Proteins (DRPs) super family. DRPs bind to cognate membranes and auto-oligomerize to drive lipid bilayers remodeling in a nucleotide dependent manner. Although structural characterization and mechanisms of DRPs that mediate membrane fission are well established, the capacity of DRPs to mediate membrane fusion is only emerging. In this review, we discuss the distinct structures and mechanisms of DRPs that trigger the anchoring and fusion of biological membranes with a specific focus on mitofusins that are dedicated to the fusion of mitochondrial outer membranes. In particular, we will highlight oligomeric assemblies of distinct DRPs and confront their mode of action against existing models of mitofusins assemblies with emphasis on recent biochemical, structural and computational reports. As we will see, the literature brings valuable insights into the presumed macro-assemblies mitofusins may form during anchoring and fusion of mitochondrial outer membranes.


Asunto(s)
Membrana Dobles de Lípidos , Fusión de Membrana , Dinaminas/química , Dinaminas/metabolismo , GTP Fosfohidrolasas/metabolismo , Nucleótidos
9.
Sci Rep ; 12(1): 7652, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538106

RESUMEN

Autophagy is an essential cellular pathway that ensures degradation of a wide range of substrates including damaged organelles or large protein aggregates. Understanding how this proteolytic pathway is regulated would increase our comprehension on its role in cellular physiology and contribute to identify biomarkers or potential drug targets to develop more specific treatments for disease in which autophagy is dysregulated. Here, we report the development of molecular traps based in the tandem disposition of LC3-interacting regions (LIR). The estimated affinity of LC3-traps for distinct recombinant LC3/GABARAP proteins is in the low nanomolar range and allows the capture of these proteins from distinct mammalian cell lines, S. cerevisiae and C. elegans. LC3-traps show preferences for GABARAP/LGG1 or LC3/LGG2 and pull-down substrates targeted to proteaphagy and mitophagy. Therefore, LC3-traps are versatile tools that can be adapted to multiple applications to monitor selective autophagy events in distinct physiologic and pathologic circumstances.


Asunto(s)
Caenorhabditis elegans , Macroautofagia , Animales , Autofagia , Caenorhabditis elegans/metabolismo , Mamíferos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Unión Proteica , Saccharomyces cerevisiae/metabolismo
10.
Biochim Biophys Acta Bioenerg ; 1861(12): 148302, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32861697

RESUMEN

From mitochondrial quality control pathways to the regulation of specific functions, the Ubiquitin Proteasome System (UPS) could be compared to a Swiss knife without which mitochondria could not maintain its integrity in the cell. Here, we review the mechanisms that the UPS employs to regulate mitochondrial function and efficiency. For this purpose, we depict how Ubiquitin and the Proteasome participate in diverse quality control pathways that safeguard entry into the mitochondrial compartment. A focus is then achieved on the UPS-mediated control of the yeast mitofusin Fzo1 which provides insights into the complex regulation of this particular protein in mitochondrial fusion. We ultimately dissect the mechanisms by which the UPS controls the degradation of mitochondria by autophagy in both mammalian and yeast systems. This organization should offer a useful overview of this abundant but fascinating literature on the crosstalks between mitochondria and the UPS.


Asunto(s)
Homeostasis , Mitocondrias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Humanos , Mitofagia , Ubiquitinación
11.
Data Brief ; 26: 104460, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31667232

RESUMEN

In this work we present a novel set of possible auto-oligomerisation states of yeast protein Fzo1 in the context of membrane docking. The dataset reports atomistic models and trajectories derived from a molecular dynamics study of the yeast mitofusin Fzo1, residues 101-855. The initial modelling was followed by coarse-grained molecular dynamics simulation to evaluate the stability and the dynamics of each structural model in a solvated membrane environment. Simulations were run for 1 µs and collected with GROMACS v5.0.4 using the martini v2.1 force field. For each structural model, the dataset comprises the production phase under semi-isotropic condition at 1 bar, 310 K and 150 mn NaCl. The integration step is 20 fs and coordinates have been saved every 1 ns. Each trajectory is associated with a ready-available visualization state for the VMD software. These structural detailed informations are a ready-available platform to plan integrative studies on the mitofusin Fzo1 and will aid the community to further elucidate the mitochondrial tethering process during membrane fusion. This dataset is based on the publication "Physics-based oligomeric models of the yeast mitofusin Fzo1 at the molecular scale in the context of membrane docking." (Brandner and De Vecchis et al., 2019)".

12.
Mitochondrion ; 49: 234-244, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31306768

RESUMEN

Tethering and homotypic fusion of mitochondrial outer membranes is mediated by large GTPases of the dynamin-related proteins family called the mitofusins. The yeast mitofusin Fzo1 forms high molecular weight complexes and its assembly during membrane fusion likely involves the formation of high order complexes. Consistent with this possibility, mitofusins form oligomers in both cis (on the same lipid bilayer) and trans to mediate membrane attachment and fusion. Here, we utilize our recent Fzo1 model to investigate and discuss the formation of cis and trans mitofusin oligomers. We have built three distinct cis-assembly Fzo1 models that gave rise to three distinct trans-oligomeric models of mitofusin constructs. Each model involves two main components of mitofusin oligomerization: the GTPase and the trunk domains. The oligomeric models proposed in this study were further assessed for stability and dynamics in a membrane environment using a coarse-grained molecular dynamics (MD) simulation approach. A narrow opening 'head-to-head' cis-oligomerization (via the GTPase domain) followed by the antiparallel 'back-to-back' trans-associations (via the trunk domain) appears to be in agreement with all of the available experimental data. More broadly, this study opens new possibilities to start exploring cis and trans conformations for Fzo1 and mitofusins in general.


Asunto(s)
GTP Fosfohidrolasas/química , Proteínas de la Membrana/química , Membranas Mitocondriales/química , Proteínas Mitocondriales/química , Simulación del Acoplamiento Molecular , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Dominios Proteicos , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
F1000Res ; 72018.
Artículo en Inglés | MEDLINE | ID: mdl-30647902

RESUMEN

Mitochondria undergo frequent fusion and fission events to adapt their morphology to cellular needs. Homotypic docking and fusion of outer mitochondrial membranes are controlled by Mitofusins, a set of large membrane-anchored GTPase proteins belonging to the dynamin superfamily. Mitofusins include, in addition to their GTPase and transmembrane domains, two heptad repeat domains, HR1 and HR2. All four regions are crucial for Mitofusin function, but their precise contribution to mitochondrial docking and fusion events has remained elusive until very recently. In this commentary, we first give an overview of the established strategies employed by various protein machineries distinct from Mitofusins to mediate membrane fusion. We then present recent structure-function data on Mitofusins that provide important novel insights into their mode of action in mitochondrial fusion.


Asunto(s)
GTP Fosfohidrolasas , Dinámicas Mitocondriales , Proteínas de Transporte de Membrana Mitocondrial , Animales , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/fisiología , Humanos , Fusión de Membrana , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Membranas Mitocondriales/metabolismo
14.
Nat Commun ; 9(1): 1761, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720625

RESUMEN

The understanding that organelles are not floating in the cytosol, but rather held in an organized yet dynamic interplay through membrane contact sites, is altering the way we grasp cell biological phenomena. However, we still have not identified the entire repertoire of contact sites, their tethering molecules and functions. To systematically characterize contact sites and their tethering molecules here we employ a proximity detection method based on split fluorophores and discover four potential new yeast contact sites. We then focus on a little-studied yet highly disease-relevant contact, the Peroxisome-Mitochondria (PerMit) proximity, and uncover and characterize two tether proteins: Fzo1 and Pex34. We genetically expand the PerMit contact site and demonstrate a physiological function in ß-oxidation of fatty acids. Our work showcases how systematic analysis of contact site machinery and functions can deepen our understanding of these structures in health and disease.


Asunto(s)
Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Citoplasma/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Peroxinas/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Autophagy ; 13(1): 114-132, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-27846375

RESUMEN

Mitochondria are dynamic organelles that undergo permanent fission and fusion events. These processes play an essential role in maintaining normal cellular function. In the yeast Saccharomyces cerevisiae, the endoplasmic reticulum-mitochondrial encounter structure (ERMES) is a marker of sites of mitochondrial division, but it is also involved in a plethora of other mitochondrial functions. However, it remains unclear how these different functions are regulated. We show here that Mdm34 and Mdm12, 2 components of ERMES, are ubiquitinated by the E3 ligase Rsp5. This ubiquitination is not involved in mitochondrial dynamics or in the distribution and turnover of ERMES. Nevertheless, the ubiquitination of Mdm34 and Mdm12 was required for efficient mitophagy. We thus report here the first identification of ubiquitinated substrates participating in yeast mitophagy.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/química , Proteínas Mitocondriales/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Secuencias de Aminoácidos , Autofagia , Retículo Endoplásmico/metabolismo , Concentración de Iones de Hidrógeno , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Mitofagia , Plásmidos/metabolismo
16.
Methods Mol Biol ; 1567: 315-336, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28276027

RESUMEN

The visualization of membrane protein complexes in their natural membrane environment is a major goal in an emerging area of research termed structural cell biology. Such approaches provide important information on the spatial distribution of protein complexes in their resident cellular membrane systems and on the structural organization of multi-subunit membrane protein assemblies. We have developed a method to specifically label active membrane protein complexes in their native membrane environment with electron-dense nanoparticles coupled to an activating ligand, in order to visualize them by electron cryo-tomography. As an example, we describe here the depiction of preprotein import sites of mitochondria, formed by the translocase of the outer membrane (TOM complex) and the presequence translocase of the inner membrane (TIM23 complex). Active import sites are selectively labeled via a biotinylated, quantum dot-coupled preprotein that is arrested in translocation across the outer and inner mitochondrial membranes. Additionally, a related method is described for direct labeling of mitochondrial outer membrane proteins that does not depend on binding of a ligand.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Proteínas de Transporte de Membrana Mitocondrial , Complejos Multiproteicos , Proteínas Portadoras/metabolismo , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Complejos Multiproteicos/metabolismo , Mutación , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Programas Informáticos , Estadística como Asunto , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
17.
Sci Rep ; 7(1): 10217, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28860650

RESUMEN

Mitofusins are large transmembrane GTPases of the dynamin-related protein family, and are required for the tethering and fusion of mitochondrial outer membranes. Their full-length structures remain unknown, which is a limiting factor in the study of outer membrane fusion. We investigated the structure and dynamics of the yeast mitofusin Fzo1 through a hybrid computational and experimental approach, combining molecular modelling and all-atom molecular dynamics simulations in a lipid bilayer with site-directed mutagenesis and in vivo functional assays. The predicted architecture of Fzo1 improves upon the current domain annotation, with a precise description of the helical spans linked by flexible hinges, which are likely of functional significance. In vivo site-directed mutagenesis validates salient aspects of this model, notably, the long-distance contacts and residues participating in hinges. GDP is predicted to interact with Fzo1 through the G1 and G4 motifs of the GTPase domain. The model reveals structural determinants critical for protein function, including regions that may be involved in GTPase domain-dependent rearrangements.


Asunto(s)
Membrana Celular/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Biología Computacional , GTP Fosfohidrolasas/genética , Guanosina Difosfato/metabolismo , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
Nat Commun ; 8: 15832, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28607491

RESUMEN

Mitochondrial integrity relies on homotypic fusion between adjacent outer membranes, which is mediated by large GTPases called mitofusins. The regulation of this process remains nonetheless elusive. Here, we report a crosstalk between the ubiquitin protease Ubp2 and the ubiquitin ligases Mdm30 and Rsp5 that modulates mitochondrial fusion. Ubp2 is an antagonist of Rsp5, which promotes synthesis of the fatty acids desaturase Ole1. We show that Ubp2 also counteracts Mdm30-mediated turnover of the yeast mitofusin Fzo1 and that Mdm30 targets Ubp2 for degradation thereby inducing Rsp5-mediated desaturation of fatty acids. Exogenous desaturated fatty acids inhibit Ubp2 degradation resulting in higher levels of Fzo1 and maintenance of efficient mitochondrial fusion. Our results demonstrate that the Mdm30-Ubp2-Rsp5 crosstalk regulates mitochondrial fusion by coordinating an intricate balance between Fzo1 turnover and the status of fatty acids saturation. This pathway may link outer membrane fusion to lipids homeostasis.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas F-Box/metabolismo , Ácidos Grasos/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Proteínas F-Box/genética , GTP Fosfohidrolasas/genética , Proteínas de la Membrana/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complejos de Ubiquitina-Proteína Ligasa/genética
19.
Elife ; 52016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27253069

RESUMEN

Fusion of mitochondrial outer membranes is crucial for proper organelle function and involves large GTPases called mitofusins. The discrete steps that allow mitochondria to attach to one another and merge their outer membranes are unknown. By combining an in vitro mitochondrial fusion assay with electron cryo-tomography (cryo-ET), we visualize the junction between attached mitochondria isolated from Saccharomyces cerevisiae and observe complexes that mediate this attachment. We find that cycles of GTP hydrolysis induce progressive formation of a docking ring structure around extended areas of contact. Further GTP hydrolysis triggers local outer membrane fusion at the periphery of the contact region. These findings unravel key features of mitofusin-dependent fusion of outer membranes and constitute an important advance in our understanding of how mitochondria connect and merge.


Asunto(s)
Técnicas In Vitro/métodos , Fusión de Membrana , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Dinámicas Mitocondriales , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Mol Biol Cell ; 20(23): 5026-35, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19812251

RESUMEN

Charcot-Marie-Tooth disease type 2A (CMT2A) is caused by mutations in the gene MFN2 and is one of the most common inherited peripheral neuropathies. Mfn2 is one of two mammalian mitofusin GTPases that promote mitochondrial fusion and maintain organelle integrity. It is not known how mitofusin mutations cause axonal degeneration and CMT2A disease. We used the conserved yeast mitofusin FZO1 to study the molecular consequences of CMT2A mutations on Fzo1 function in vivo and in vitro. One mutation (analogous to the CMT2A I213T substitution in the GTPase domain of Mfn2) not only abolishes GTP hydrolysis and mitochondrial membrane fusion but also reduces Mdm30-mediated ubiquitylation and degradation of the mutant protein. Importantly, complexes of wild type and the mutant Fzo1 protein are GTPase active and restore ubiquitylation and degradation of the latter. These studies identify diverse and unexpected effects of CMT2A mutations, including a possible role for mitofusin ubiquitylation and degradation in CMT2A pathogenesis, and provide evidence for a novel link between Fzo1 GTP hydrolysis, ubiquitylation, and mitochondrial fusion.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Respiración de la Célula/fisiología , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/fisiopatología , GTP Fosfohidrolasas/genética , Humanos , Fusión de Membrana/fisiología , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Datos de Secuencia Molecular , Fenotipo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA