Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS Biol ; 21(6): e3002167, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37368874

RESUMEN

Technological advancements in biology and microscopy have empowered a transition from bioimaging as an observational method to a quantitative one. However, as biologists are adopting quantitative bioimaging and these experiments become more complex, researchers need additional expertise to carry out this work in a rigorous and reproducible manner. This Essay provides a navigational guide for experimental biologists to aid understanding of quantitative bioimaging from sample preparation through to image acquisition, image analysis, and data interpretation. We discuss the interconnectedness of these steps, and for each, we provide general recommendations, key questions to consider, and links to high-quality open-access resources for further learning. This synthesis of information will empower biologists to plan and execute rigorous quantitative bioimaging experiments efficiently.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microscopía
2.
Nat Immunol ; 9(7): 743-52, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18536720

RESUMEN

Neutrophils encounter and 'prioritize' many chemoattractants in their pursuit of bacteria. Here we tested the possibility that the phosphatase PTEN is responsible for the prioritization of chemoattractants. Neutrophils induced chemotaxis by two separate pathways, the phosphatidylinositol-3-OH kinase (PI(3)K) phosphatase and tensin homolog (PTEN) pathway, and the p38 mitogen-activated protein kinase pathway, with the p38 pathway dominating over the PI(3)K pathway. Pten(-/-) neutrophils could not prioritize chemoattractants and were 'distracted' by chemokines when moving toward bacterial chemoattractants. In opposing gradients, PTEN became distributed throughout the cell circumference, which inhibited all PI(3)K activity, thus permitting 'preferential' migration toward bacterial products via phospholipase A(2) and p38. Such prioritization was defective in Pten(-/-) neutrophils, which resulted in defective bacterial clearance in vivo. Our data identify a PTEN-dependent mechanism in neutrophils to prioritize, 'triage' and integrate responses to multiple chemotactic cues.


Asunto(s)
Quimiotaxis de Leucocito/fisiología , Neutrófilos/metabolismo , Fosfohidrolasa PTEN/metabolismo , Animales , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Ratones , Ratones Transgénicos , Neutrófilos/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/inmunología , Fosfatos de Fosfatidilinositol/metabolismo , Transporte de Proteínas/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Mol Pharmacol ; 96(1): 115-126, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31048549

RESUMEN

Three small conductance calcium-activated potassium channel (SK) subunits have been cloned and found to preferentially form heteromeric channels when expressed in a heterologous expression system. The original cloning of the gene encoding the intermediate conductance calcium-activated potassium channel (IKCa) was termed SK4 because of the high homology between channel subtypes. Recent immunovisualization suggests that IKCa is expressed in the same subcellular compartments of some neurons as SK channel subunits. Stochastic optical reconstruction microscopy super-resolution microscopy revealed that coexpressed IKCa and SK1 channel subunits were closely associated, a finding substantiated by measurement of fluorescence resonance energy transfer between coexpressed fluorophore-tagged subunits. Expression of homomeric SK1 channels produced current that displayed typical sensitivity to SK channel inhibitors, while expressed IKCa channel current was inhibited by known IKCa channel blockers. Expression of both SK1 and IKCa subunits gave a current that displayed no sensitivity to SK channel inhibitors and a decreased sensitivity to IKCa current inhibitors. Single channel recording indicated that coexpression of SK1 and IKCa subunits produced channels with properties intermediate between those observed for homomeric channels. These data indicate that SK1 and IKCa channel subunits preferentially combine to form heteromeric channels that display pharmacological and biophysical properties distinct from those seen with homomeric channels.


Asunto(s)
Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Complejos Multiproteicos/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Línea Celular , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Microscopía , Procesos Estocásticos
4.
J Org Chem ; 84(11): 7372-7387, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31088084

RESUMEN

Reported herein is the synthesis of sialyl LewisX analogues bearing a trans-bicyclo[4.4.0] dioxadecane-modified 3- O,4- C-fused galactopyranoside scaffold that locks the carboxylate pharmacophore in either the axial or equatorial position. This novel series of bicyclic galactopyranosides are prepared through a stereocontrolled intramolecular cyclization reaction that has been evaluated both experimentally and by density functional theory calculations. The cyclization precursors are obtained from ß-d-galactose pentaacetate in a nine-step sequence featuring a highly diastereoselective equatorial alkynylation and Cu(I) catalyzed formation of the acetylenic α-ketoester moiety. Preliminary biological evaluations indicate improved activity as P-selectin antagonists for the axially configured analogues as compared to their equatorial counterparts.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Galactosa/química , Antígeno Sialil Lewis X/química , Estructura Molecular
5.
J Cell Sci ; 128(4): 695-705, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25501808

RESUMEN

Focal adhesion kinase (FAK)-related nonkinase (PTK2 isoform 6 in humans, hereafter referred to as FRNK) is a cytoskeletal regulatory protein that has recently been shown to dampen lung fibrosis, yet its role in inflammation is unknown. Here, we show for the first time that expression of FRNK negatively regulates IL-4-mediated inflammation in a human model of eosinophil recruitment. Mechanistically, FRNK blocks eosinophil accumulation, firm adhesion and transmigration by preventing transcription and protein expression of VCAM-1 and CCL26. IL-4 activates STAT6 to induce VCAM-1 and CCL26 transcription. We now show that IL-4 also increases GATA6 to induce VCAM-1 expression. FRNK blocks IL-4-induced GATA6 transcription but has little effect on GATA6 protein expression and no effect on STAT6 activation. FRNK can block FAK or Pyk2 signaling and we, thus, downregulated these proteins using siRNA to determine whether signaling from either protein is involved in the regulation of VCAM-1 and CCL26. Knockdown of FAK, Pyk2 or both had no effect on VCAM-1 or CCL26 expression, which suggests that FRNK acts independently of FAK and Pyk2 signaling. Finally, we found that IL-4 induces the late expression of endogenous FRNK. In summary, FRNK represents a novel mechanism to negatively regulate IL-4-mediated inflammation.


Asunto(s)
Mediadores de Inflamación/metabolismo , Inflamación/inmunología , Interleucina-4/inmunología , Proteínas Tirosina Quinasas/metabolismo , Adhesión Celular/inmunología , Movimiento Celular/inmunología , Células Cultivadas , Quimiocina CCL26 , Quimiocinas CC/biosíntesis , Activación Enzimática , Eosinófilos/inmunología , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 2 de Adhesión Focal/genética , Quinasa 2 de Adhesión Focal/metabolismo , Factor de Transcripción GATA6/biosíntesis , Factor de Transcripción GATA6/genética , Expresión Génica/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas Tirosina Quinasas/genética , Interferencia de ARN , ARN Interferente Pequeño , Factor de Transcripción STAT6/metabolismo , Transducción de Señal/inmunología , Transcripción Genética/genética , Molécula 1 de Adhesión Celular Vascular/biosíntesis
6.
Am J Physiol Gastrointest Liver Physiol ; 311(3): G466-79, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27492333

RESUMEN

Barrier dysfunction is a characteristic of the inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Understanding how the tight junction is modified to maintain barrier function may provide avenues for treatment of IBD. We have previously shown that the apical addition of serine proteases to intestinal epithelial cell lines causes a rapid and sustained increase in transepithelial electrical resistance (TER), but the mechanisms are unknown. We hypothesized that serine proteases increase barrier function through trafficking and insertion of tight junction proteins into the membrane, and this could enhance recovery of a disrupted monolayer after calcium switch or cytokine treatment. In the canine epithelial cell line, SCBN, we showed that matriptase, an endogenous serine protease, could potently increase TER. Using detergent solubility-based cell fractionation, we found that neither trypsin nor matriptase treatment changed levels of tight junction proteins at the membrane. In a fast calcium switch assay, serine proteases did not enhance the rate of recovery of the junction. In addition, serine proteases could not reverse barrier disruption induced by IFNγ and TNFα. We knocked down occludin in our cells using siRNA and found this prevented the serine protease-induced increase in TER. Using fluorescence recovery after photobleaching (FRAP), we found serine proteases induce a greater mobile fraction of occludin in the membrane. These data suggest that a functional tight junction is needed for serine proteases to have an effect on TER, and that occludin is a crucial tight junction protein in this mechanism.


Asunto(s)
Células Epiteliales/enzimología , Mucosa Intestinal/citología , Ocludina/metabolismo , Uniones Estrechas/fisiología , Animales , Línea Celular , Perros , Impedancia Eléctrica , Fenómenos Electrofisiológicos , Células Epiteliales/citología , Células Epiteliales/fisiología , Ocludina/genética , Transporte de Proteínas , Serina Endopeptidasas/farmacología , Serina Proteasas , Proteínas de Uniones Estrechas/metabolismo , Tripsina/farmacología
7.
J Immunol ; 191(1): 249-61, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23740956

RESUMEN

During adaptive immunity to pathogens, dendritic cells (DCs) capture, kill, process, and present microbial Ags to T cells. Ag presentation is accompanied by DC maturation driven by appropriate costimulatory signals. However, current understanding of the intricate regulation of these processes remains limited. Cryptococcus gattii, an emerging fungal pathogen in the Pacific Northwest of Canada and the United States, fails to stimulate an effective immune response in otherwise healthy hosts leading to morbidity or death. Because immunity to fungal pathogens requires intact cell-mediated immunity initiated by DCs, we asked whether C. gattii causes dysregulation of DC functions. C. gattii was efficiently bound and internalized by human monocyte-derived DCs, trafficked to late phagolysosomes, and killed. Yet, even with this degree of DC activation, the organism evaded pathways leading to DC maturation. Despite the ability to recognize and kill C. gattii, immature DCs failed to mature; there was no increased expression of MHC class II, CD86, CD83, CD80, and CCR7, or decrease of CD11c and CD32, which resulted in suboptimal T cell responses. Remarkably, no increase in TNF-α was observed in the presence of C. gattii. However, addition of recombinant TNF-α or stimulation that led to TNF-α production restored DC maturation and restored T cell responses. Thus, despite early killing, C. gattii evades DC maturation, providing a potential explanation for its ability to infect immunocompetent individuals. We have also established that DCs retain the ability to recognize and kill C. gattii without triggering TNF-α, suggesting independent or divergent activation pathways among essential DC functions.


Asunto(s)
Inmunidad Adaptativa/inmunología , Diferenciación Celular/inmunología , Criptococosis/inmunología , Criptococosis/patología , Cryptococcus gattii/inmunología , Células Dendríticas/inmunología , Células Dendríticas/patología , Evasión Inmune/inmunología , Células Cultivadas , Criptococosis/microbiología , Cryptococcus gattii/crecimiento & desarrollo , Cryptococcus gattii/patogenicidad , Células Dendríticas/microbiología , Humanos , Inmunofenotipificación , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/fisiología
8.
Antioxid Redox Signal ; 40(1-3): 1-15, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37154733

RESUMEN

Aims: Structural analogues of bisphenol A (BPA), including bisphenol S (BPS) and bisphenol F (BPF), are emerging environmental toxicants as their presence in the environment is rising since new regulatory restrictions were placed on BPA-containing infant products. The adipogenesis-enhancing effect of bisphenols may explain the link between human exposure and metabolic disease; however, underlying molecular pathways remain unresolved. Results: Exposure to BPS, BPF, BPA, or reactive oxygen species (ROS) generators enhanced lipid droplet formation and expression of adipogenic markers after induction of differentiation in adipose-derived progenitors isolated from mice. RNAseq analysis in BPS-exposed progenitors revealed modulation in pathways regulating adipogenesis and responses to oxidative stress. ROS were higher in bisphenol-exposed cells, while cotreatment with antioxidants attenuated adipogenesis and abolished the effect of BPS. There was a loss of mitochondrial membrane potential in BPS-exposed cells and mitochondria-derived ROS contributed to the potentiation of adipogenesis by BPS and its analogues. Male mice exposed to BPS during gestation had higher whole-body adiposity, as measured by time domain nuclear magnetic resonance, while postnatal exposure had no impact on adiposity in either sex. Innovation: These findings support existing evidence showing a role for ROS in regulating adipocyte differentiation and are the first to highlight ROS as a unifying mechanism that explains the proadipogenic properties of BPA and its structural analogues. Conclusion: ROS act as signaling molecules in the regulation of adipocyte differentiation and mediate bisphenol-induced potentiation of adipogenesis. Antioxid. Redox Signal. 40, 1-15.


Asunto(s)
Adipogénesis , Compuestos de Bencidrilo , Fenoles , Sulfonas , Humanos , Masculino , Ratones , Animales , Especies Reactivas de Oxígeno , Compuestos de Bencidrilo/farmacología
9.
Eur J Immunol ; 42(2): 436-46, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22095445

RESUMEN

During an inflammatory response, endothelial cells undergo morphological changes to allow for the passage of neutrophils from the blood vessel to the site of injury or infection. Although endothelial cell junctions and the cytoskeleton undergo reorganization during inflammation, little is known about another class of cellular structures, the focal adhesions. In this study, we examined several focal adhesion proteins during an inflammatory response. We found that there was selective loss of paxillin and focal adhesion kinase (FAK) from focal adhesions in proximity to transmigrating neutrophils; in contrast the levels of the focal adhesion proteins ß1-integrin and vinculin were unaffected. Paxillin was lost from focal adhesions during neutrophil transmigration both under static and flow conditions. Down-regulating endothelial paxillin with siRNA blocked neutrophil transmigration while having no effect on rolling or adhesion. As paxillin dynamics are regulated partly by FAK, the role of FAK in neutrophil transmigration was examined using two complementary methods. siRNA was used to down-regulate total FAK protein while dominant-negative, kinase-deficient FAK was expressed to block FAK signaling. Disruption of the FAK protein or FAK signaling decreased neutrophil transmigration. Collectively, these findings reveal a novel role for endothelial focal adhesion proteins paxillin and FAK in regulating neutrophil transmigration.


Asunto(s)
Endotelio/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Neutrófilos/metabolismo , Paxillin/metabolismo , Migración Transendotelial y Transepitelial/inmunología , Adhesión Celular/genética , Células Cultivadas , Regulación hacia Abajo/genética , Regulación hacia Abajo/inmunología , Endotelio/inmunología , Endotelio/patología , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/inmunología , Adhesiones Focales/patología , Humanos , Inflamación , Rodamiento de Leucocito/genética , Mutación/genética , Neutrófilos/inmunología , Neutrófilos/patología , Paxillin/genética , Paxillin/inmunología , ARN Interferente Pequeño/genética , Migración Transendotelial y Transepitelial/genética , Transgenes/genética
10.
Cell Microbiol ; 14(12): 1819-27, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22966777

RESUMEN

Recent technical advances have afforded valuable new insights into the pathogenesis of fungal infections in the central nervous system (CNS), which continue to cause devastating complications, particularly in immunocompromised individuals. To cause CNS mycosis, organisms such as Cryptococcus neoformans become blood borne and progress through a series of pathogenic checkpoints that culminate in fungal replication in the brain. Critical steps include fungal arrest in the vasculature of the brain, interaction and signalling of the fungal and endothelial cells leading to transmigration with subsequent parenchymal invasion and fungal replication in the CNS. Previous studies that made use of in vitro and ex vivo approaches contributed greatly to our understanding of brain invasion by fungi. However, the knowledge gained from previous studies relied on in vitro models that did not account for vascular haemodynamics. For this reason, more refined approaches that model blood flow and vascular anatomy are required, andultimately studying fungal invasion and dissemination in vivo. Indeed, in vivo imaging (also known as intravital imaging) has emerged as a valuable technique to probe host-pathogen interactions. In this review, with a focus on C. neoformans, we will provide an overview of the applications of the prior techniques and recent advances, their strengths and limitations in characterizing the migration of fungi into the brain, and unanswered questions that may provide new directions for research.


Asunto(s)
Sistema Nervioso Central/microbiología , Sistema Nervioso Central/patología , Cryptococcus neoformans/patogenicidad , Microscopía por Video/métodos , Procesamiento de Imagen Asistido por Computador/métodos
11.
Mitochondrion ; 68: 44-59, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356719

RESUMEN

Mitochondrial dysfunction as defined by transcriptomic and proteomic analysis of biopsies or ultra-structure in transmission electron microscopy occurs in inflammatory bowel disease (IBD); however, mitochondrial dynamics in IBD have received minimal attention, with most investigations relying on cell-based in vitro models. We build on these studies by adapting the epithelial cell immunofluorescence workflow to imaging mitochondrial networks in normal and inflamed colonic tissue (i.e., murine di-nitrobenzene sulphonic acid (DNBS)-induced colitis, human ulcerative colitis). Using antibodies directed to TOMM20 (translocase of outer mitochondrial membrane 20) and cytochrome-C, we have translated the cell-based protocol for high-fidelity imaging to examine epithelial mitochondria networks in intact intestine. In epithelia of non-inflamed small or large intestinal tissue, the mitochondrial networks were dense and compact. This pattern was more pronounced in the basal region of the cell compared to that between the nucleus and apical surface facing the gut lumen. In comparison, mitochondrial networks in inflamed tissue displayed substantial loss of TOMM20+ staining. The remaining networks were less dense and fragmented, and contained isolated spherical mitochondrial fragments. The degree of mitochondrial network fragmentation mirrored the severity of inflammation, as assessed by blinded semi-quantitative scoring. As an indication of poor cell 'health' or viability, cytosolic cytochrome-C was observed in enterocytes with highly fragmented mitochondria. Thus, high-resolution and detailed visualization of mitochondrial networks in tissue is a feasible and valuable approach to assess disease, suited to characterizing mitochondrial abnormalities in tissue. We speculate that drugs that maintain a functional remodelling mitochondrial network and limit excess fragmentation could be a valuable addition to current therapies for IBD.


Asunto(s)
Citocromos c , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Citocromos c/metabolismo , Proteómica , Colon/metabolismo , Colon/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Proteínas Portadoras , Mitocondrias/metabolismo
12.
J Exp Med ; 203(12): 2569-75, 2006 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-17116736

RESUMEN

The prevailing view is that the beta2-integrins Mac-1 (alphaMbeta2, CD11b/CD18) and LFA-1 (alphaLbeta2, CD11a/CD18) serve similar biological functions, namely adhesion, in the leukocyte recruitment cascade. Using real-time and time-lapse intravital video-microscopy and confocal microscopy within inflamed microvessels, we systematically evaluated the function of Mac-1 and LFA-1 in the recruitment paradigm. The chemokine macrophage inflammatory protein-2 induced equivalent amounts of adhesion in wild-type and Mac-1-/- mice but very little adhesion in LFA-1-/- mice. Time-lapse video-microscopy within the postcapillary venules revealed that immediately upon adhesion, there is significant intraluminal crawling of all neutrophils to distant emigration sites in wild-type mice. In dramatic contrast, very few Mac-1-/- neutrophils crawled with a 10-fold decrease in displacement and a 95% reduction in velocity. Therefore, Mac-1-/- neutrophils initiated transmigration closer to the initial site of adhesion, which in turn led to delayed transmigration due to movement through nonoptimal emigration sites. Interestingly, the few LFA-1-/- cells that did adhere crawled similarly to wild-type neutrophils. Intercellular adhesion molecule-1 but not intercellular adhesion molecule-2 mediated the Mac-1-dependent crawling. These in vivo results clearly delineate two fundamentally different molecular mechanisms for LFA-1 and Mac-1 in vivo, i.e., LFA-1-dependent adhesion followed by Mac-1-dependent crawling, and both steps ultimately contribute to efficient emigration out of the vasculature.


Asunto(s)
Movimiento Celular/inmunología , Rodamiento de Leucocito/inmunología , Neutrófilos/inmunología , Animales , Adhesión Celular/genética , Adhesión Celular/inmunología , Movimiento Celular/genética , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Rodamiento de Leucocito/genética , Antígeno-1 Asociado a Función de Linfocito/genética , Antígeno-1 Asociado a Función de Linfocito/fisiología , Antígeno de Macrófago-1/genética , Antígeno de Macrófago-1/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/patología , Vénulas/inmunología , Vénulas/patología
13.
Methods Mol Biol ; 2440: 3-39, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35218530

RESUMEN

Optical microscopy is a tool for observing objects, and features within objects, that are not visible to the unaided eye. In the life sciences, fluorescence microscopy has been widely adopted because it allows us to selectively observe molecules, organelles, and cells at multiple levels of organization. Fluorescence microscopy encompasses numerous techniques and applications that share a specialized technical language and concepts that can create barriers for researchers who are new to this area. Our goal is to meet the needs of researchers new to fluorescence microscopy, by introducing the essential concepts and mindset required to navigate and apply this powerful technology to the laboratory.


Asunto(s)
Microscopía Fluorescente , Microscopía Fluorescente/métodos
14.
J Exp Med ; 202(6): 865-76, 2005 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-16172263

RESUMEN

Leukocyte transmigration can be affected by shear stress; however, the mechanisms by which shear stress modulates transmigration are unknown. We found that adhesion of eosinophils or an eosinophilic cell line to intereukin 4-stimulated endothelial cells led to a shear-dependent increase in endothelial cell intracellular calcium and increased phosphorylation of extracellular signal-regulated kinase (ERK) 2, but not c-Jun NH2-terminal kinase or p38 mitogen-activated protein kinase. Latex beads coated with antibodies were used to characterize the role of specific endothelial cell surface molecules in initiating signaling under shear conditions. We found that ligation of either vascular cell adhesion molecule-1 or E-selectin, but not major histocompatibility complex class I, induced a shear-dependent increase in ERK2 phosphorylation in cytokine-stimulated endothelial cells. Disassembly of the actin cytoskeleton with latrunculin A prevented ERK2 phosphorylation after adhesion under flow conditions, supporting a role for the cytoskeleton in mechano-sensing. Rapid phosphorylation of focal adhesion kinase and paxillin occurred under identical conditions, suggesting that focal adhesions were also involved in mechanotransduction. Finally, we found that Rho-associated protein kinase and calpain were both critical in the subsequent transendothelial migration of eosinophils under flow conditions. These data suggest that ligation of leukocyte adhesion molecules under flow conditions leads to mechanotransduction in endothelial cells, which can regulate subsequent leukocyte trafficking.


Asunto(s)
Movimiento Celular/inmunología , Células Endoteliales/fisiología , Eosinófilos/fisiología , Mecanotransducción Celular/inmunología , Actinas/metabolismo , Adulto , Calcio/fisiología , Calpaína/fisiología , Adhesión Celular/inmunología , Línea Celular , Movimiento Celular/fisiología , Citoesqueleto/metabolismo , Selectina E/metabolismo , Células Endoteliales/enzimología , Endotelio Vascular/citología , Endotelio Vascular/enzimología , Endotelio Vascular/inmunología , Humanos , Interleucina-4/fisiología , Péptidos y Proteínas de Señalización Intracelular , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Tirosina Quinasas/fisiología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Quinasas Asociadas a rho
15.
J Immunol ; 182(11): 6870-8, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19454683

RESUMEN

Mac-1-dependent crawling is a new step in the leukocyte recruitment cascade that follows LFA-1-dependent adhesion and precedes emigration. Neutrophil adhesion via LFA-1 has been shown to induce cytoskeletal reorganization through Vav1-dependent signaling, and the current study investigates the role of Vav1 in the leukocyte recruitment process in vivo with particular attention to the events immediately downstream of LFA-1-dependent adhesion. Intravital and spinning-disk-confocal microscopy was used to investigate intravascular crawling in relation to endothelial junctions in vivo in wild-type and Vav1(-/-) mice. Adherent wild-type neutrophils almost immediately began crawling perpendicular to blood flow via Mac-1 until they reached an endothelial junction where they often changed direction. This pattern of perpendicular, mechanotactic crawling was recapitulated in vitro when shear was applied. In sharp contrast, the movement of Vav1(-/-) neutrophils was always in the direction of flow and appeared more passive as if the cells were dragged in the direction of flow in vivo and in vitro. More than 80% of Vav1(-/-) neutrophils moved independent of Mac-1 and could be detached with LFA-1 Abs. An inability to release the uropod was frequently noted for Vav1(-/-) neutrophils, leading to greatly elongated tails. The Vav1(-/-) neutrophils failed to stop or follow junctions and ultimately detached, leading to fewer emigrated neutrophils. The Vav1(-/-) phenotype resulted in fewer neutrophils recruited in a relevant model of infectious peritonitis. Clearly, Vav1 is critical for the complex interplay between LFA-1 and Mac-1 that underlies the programmed intravascular crawling of neutrophils.


Asunto(s)
Quimiotaxis de Leucocito/inmunología , Inflamación/inmunología , Antígeno-1 Asociado a Función de Linfocito/fisiología , Antígeno de Macrófago-1/fisiología , Microvasos/patología , Neutrófilos/fisiología , Proteínas Proto-Oncogénicas c-vav/fisiología , Animales , Endotelio Vascular/citología , Hemorreología , Uniones Intercelulares , Masculino , Ratones , Ratones Noqueados , Microscopía , Proteínas Proto-Oncogénicas c-vav/deficiencia , Grabación en Video
16.
J Immunol ; 182(11): 7058-68, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19454703

RESUMEN

Adenovirus is a nonenveloped dsDNA virus that activates intracellular innate immune pathways. In vivo, adenovirus-immunized mice displayed an enhanced innate immune response and diminished virus-mediated gene delivery following challenge with the adenovirus vector AdLacZ suggesting that antiviral Abs modulate viral interactions with innate immune cells. Under naive serum conditions in vitro, adenovirus binding and internalization in macrophages and the subsequent activation of innate immune mechanisms were inefficient. In contrast to the neutralizing effect observed in nonhematopoietic cells, adenovirus infection in the presence of antiviral Abs significantly increased FcR-dependent viral internalization in macrophages. In direct correlation with the increased viral internalization, antiviral Abs amplified the innate immune response to adenovirus as determined by the expression of NF-kappaB-dependent genes, type I IFNs, and caspase-dependent IL-1beta maturation. Immune serum amplified TLR9-independent type I IFN expression and enhanced NLRP3-dependent IL-1beta maturation in response to adenovirus, confirming that antiviral Abs specifically amplify intracellular innate pathways. In the presence of Abs, confocal microscopy demonstrated increased targeting of adenovirus to LAMP1-positive phagolysosomes in macrophages but not epithelial cells. These data show that antiviral Abs subvert natural viral tropism and target the adenovirus to phagolysosomes and the intracellular innate immune system in macrophages. Furthermore, these results illustrate a cross-talk where the adaptive immune system positively regulates the innate immune system and the antiviral state.


Asunto(s)
Adenoviridae/inmunología , Anticuerpos Antivirales/inmunología , Inmunidad Innata/inmunología , Fagosomas/inmunología , Infecciones por Adenoviridae/inmunología , Animales , Macrófagos/inmunología , Macrófagos/virología , Ratones , Fagocitosis , Regulación hacia Arriba/genética , Regulación hacia Arriba/inmunología
17.
ERJ Open Res ; 7(1)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33569497

RESUMEN

RATIONALE: Delivery of continuous positive airway pressure (CPAP) is the standard treatment for obstructive sleep apnoea in children and adults. Treatment adherence is a major challenge, as many patients find the CPAP mask uncomfortable. The study aim was to demonstrate the feasibility of delivered CPAP through customised nasal masks by assessing mask leak and comfort of customised masks compared to commercially available CPAP masks. METHODS: Six healthy adult volunteers participated in a crossover study including commercial masks in three different sizes (petite, small/medium and large) from the same supplier and a customised mask fabricated for each subject using three-dimensional facial scanning and modern additive manufacturing processes. Mask leak and comfort were assessed with varying CPAP levels and mask tightness. Leak was measured in real time using an inline low-resistance Pitot tube flow sensor, and each mask was ranked for comfort by the subjects. RESULTS: Mask leak rates varied directly with CPAP level and inversely with mask tightness. When ranked for comfort, three subjects favoured the customised mask, while three favoured a commercial mask. The petite mask yielded the highest mask leaks and was ranked least comfortable by all subjects. Relative mask leaks and comfort rankings for the other commercial and customised masks varied between individuals. Mask leak was comparable when comparing the customised masks with the highest ranked commercial masks. CONCLUSION: Customised masks successfully delivered target CPAP settings in all six subjects, demonstrating the feasibility of this approach.

18.
PLoS Pathog ; 4(6): e1000090, 2008 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-18566656

RESUMEN

Pathogenic spirochetes are bacteria that cause a number of emerging and re-emerging diseases worldwide, including syphilis, leptospirosis, relapsing fever, and Lyme borreliosis. They navigate efficiently through dense extracellular matrix and cross the blood-brain barrier by unknown mechanisms. Due to their slender morphology, spirochetes are difficult to visualize by standard light microscopy, impeding studies of their behavior in situ. We engineered a fluorescent infectious strain of Borrelia burgdorferi, the Lyme disease pathogen, which expressed green fluorescent protein (GFP). Real-time 3D and 4D quantitative analysis of fluorescent spirochete dissemination from the microvasculature of living mice at high resolution revealed that dissemination was a multi-stage process that included transient tethering-type associations, short-term dragging interactions, and stationary adhesion. Stationary adhesions and extravasating spirochetes were most commonly observed at endothelial junctions, and translational motility of spirochetes appeared to play an integral role in transendothelial migration. To our knowledge, this is the first report of high resolution 3D and 4D visualization of dissemination of a bacterial pathogen in a living mammalian host, and provides the first direct insight into spirochete dissemination in vivo.


Asunto(s)
Borrelia burgdorferi/patogenicidad , Endotelio Vascular/microbiología , Imagenología Tridimensional/métodos , Microcirculación/microbiología , Animales , Células Endoteliales/microbiología , Endotelio Vascular/patología , Proteínas Fluorescentes Verdes , Uniones Intercelulares/microbiología , Enfermedad de Lyme/microbiología , Ratones , Ratones Endogámicos , Microscopía por Video , Adherencias Tisulares
19.
J Leukoc Biol ; 108(1): 83-91, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32170880

RESUMEN

Eosinophils are traditionally associated with allergic and parasitic inflammation. More recently, eosinophils have also been shown to have roles in diverse processes including development, intestinal health, thymic selection, and B-cell survival with the majority of these insights being derived from murine models and in vitro assays. Despite this, tools to measure the dynamic activity of eosinophils in situ have been lacking. Intravital microscopy is a powerful tool that enables direct visualization of leukocytes and their dynamic behavior in real-time in a wide range of processes in both health and disease. Until recently eosinophil researchers have not been able to take full advantage of this technology due to a lack of tools such as genetically encoded reporter mice. This mini-review examines the history of intravital microscopy with a focus on eosinophils. The development and use of eosinophil-specific Cre (EoCre) mice to create GFP and tdTomato fluorescent reporter animals is also described. Genetically encoded eosinophil reporter mice combined with intravital microscopy provide a powerful tool to add to the toolbox of technologies that will help us unravel the mysteries still surrounding this cell.


Asunto(s)
Eosinófilos/citología , Microscopía Intravital , Animales , Ciego/citología , Colorantes Fluorescentes/metabolismo , Genes Reporteros , Intestino Delgado/citología , Pulmón/citología , Ganglios Linfáticos/citología , Ratones Endogámicos C57BL , Músculos/citología
20.
J Biomed Opt ; 24(4): 1-8, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31007003

RESUMEN

Coherent anti-Stokes Raman scattering (CARS) generates a strong label-free signal in the long wavenumber C─H stretching region. Lipid-rich myelinated tissues, such as brain and spinal cord, would appear to be ideal subjects for imaging with CARS laser-scanning microscopy. However, the highly ordered, biochemically complex, and highly scattering nature of such tissues complicate the use of the technique. A CARS microscopy approach is presented that overcomes the challenges of imaging myelinated tissue to achieve chemically and orientationally sensitive high-resolution images.


Asunto(s)
Microscopía/métodos , Vaina de Mielina , Espectrometría Raman/métodos , Médula Espinal/diagnóstico por imagen , Animales , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador/métodos , Lípidos/química , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/química , Vaina de Mielina/fisiología , Médula Espinal/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA