Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(20): 24023-24033, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37188328

RESUMEN

Precise manipulation of (sub)micron particles is key for the preparation, enrichment, and quality control in many biomedical applications. Surface acoustic waves (SAW) hold tremendous promise for manipulation of (bio)particles at the micron to nanoscale ranges. In commonly used SAW tweezers, particle manipulation relies on the direct acoustic radiation effect whose superior performance fades rapidly when progressing from micron to nanoscale particles due to the increasing dominance of a second order mechanism, termed acoustic streaming. Through reproducible and high-precision realization of stiff microchannels to reliably actuate the microchannel cross-section, here we introduce an approach that allows the otherwise competing acoustic streaming to complement the acoustic radiation effect. The synergetic effect of both mechanisms markedly enhances the manipulation of nanoparticles, down to 200 nm particles, even at relatively large wavelength (300 µm). Besides spherical particles ranging from 0.1 to 3 µm, we show collections of cells mixed with different sizes and shapes inherently existing in blood including erythrocytes, leukocytes, and thrombocytes.


Asunto(s)
Nanopartículas , Sonido , Humanos , Acústica , Células Sanguíneas , Eritrocitos
2.
Lab Chip ; 19(24): 4043-4051, 2019 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-31723953

RESUMEN

The ability to separate specific biological components from cell suspensions is indispensable for liquid biopsies, and for personalized diagnostics and therapy. This paper describes an advanced surface acoustic wave (SAW) based device designed for the enrichment of platelets (PLTs) from a dispersion of PLTs and red blood cells (RBCs) at whole blood concentrations, opening new possibilities for diverse applications involving cell manipulation with high throughput. The device is made of patterned SU-8 photoresist that is lithographically defined on the wafer scale with a new proposed methodology. The blood cells are initially focused and subsequently separated by an acoustic radiation force (ARF) applied through standing SAWs (SSAWs). By means of flow cytometric analysis, the PLT concentration factor was found to be 7.7, and it was proven that the PLTs maintain their initial state. A substantially higher cell throughput and considerably lower applied powers than comparable devices from literature were achieved. In addition, fully coupled 3D numerical simulations based on SAW wave field measurements were carried out to anticipate the coupling of the wave field into the fluid, and to obtain the resulting pressure field. A comparison to the acoustically simpler case of PDMS channel walls is given. The simulated results show an ideal match to the experimental observations and offer the first insights into the acoustic behavior of SU-8 as channel wall material. The proposed device is compatible with current (Lab-on-a-Chip) microfabrication techniques allowing for mass-scale, reproducible chip manufacturing which is crucial to push the technology from lab-based to real-world applications.


Asunto(s)
Plaquetas/citología , Separación Celular , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Microfluídica , Sonido , Separación Celular/instrumentación , Separación Celular/métodos , Eritrocitos/citología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA