Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(19): 11836-11847, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35510417

RESUMEN

Dynamical behavior of fluids under nano-pore confinement is studied extensively as it has important implications for several industrial as well as geological processes. Pore network in many porous materials exhibits a varied degree of inter connections. The extent of this pore connectivity may affect the structural and dynamical behavior of the confined fluid. However, studies of fluid confinement addressing these effects systematically are lacking. Here, we report molecular dynamics simulation studies addressing the effects of pore connectivity on the dynamics of two representative fluids - CO2 and ethane in silicalite by systematically varying the degree of pore connectivity through selectively blocking some pore space with immobile methane molecules. By selectively turning off the pore spaces in the shape of straight, or tortuous zigzag channels, we also probe the effects of pore tortuosity. In general, pore connectivity is found to facilitate both the translational as well as rotational dynamics of both fluids, while the intermolecular modes of vibration in both fluids remain largely unaffected. The effects of providing connections between a set of straight or zigzag channel-like pores are however more nuanced. Pore tortuosity facilitates the rotational motion, but suppresses the translational motion of CO2, while its effects on the rotational and translational motion of ethane are less pronounced. The intermolecular vibrational modes of both fluids shift to higher energies with an increase in the number of tortuous pores. The results reported here provide a detailed molecular level understanding of the effects of pore connectivity on the dynamics of fluids and thus have implications for applications like fluid separation.

2.
Phys Chem Chem Phys ; 23(34): 18885-18892, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34612426

RESUMEN

Understanding the wetting properties of reservoir rocks can be of great benefit for advanced applications such as the effective trapping and geological storage of CO2. Despite their importance, not all mechanisms responsible for wetting mineral surfaces in subsurface environments are well understood. Factors such as temperature, pressure and salinity are often studied, achieving results with little unanimity; other possible factors are left somewhat unexplored. One such factor is the effect of contamination. In the present study, the effects of adding a non-aqueous organic contaminant, ethanol, on the CO2-water interfacial tension (IFT) and the CO2/water/calcite contact angle were investigated using molecular dynamics simulations. Within the conditions studied, relatively small amounts of ethanol cause a significant decrease in the CO2-water IFTs, as well as a pronounced increase in the water-calcite-CO2 three phase contact angle. The latter result is due to the decrease of the IFT between CO2 and water and the strong adsorption of ethanol on the solid substrate. These findings could be helpful for explaining how impurities can affect experimental data and could lead to effective carbon sequestration strategies.

3.
Proc Natl Acad Sci U S A ; 115(28): E6585-E6594, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941576

RESUMEN

Hydraulic fracturing is one of the industrial processes behind the surging natural gas output in the United States. This technology inadvertently creates an engineered microbial ecosystem thousands of meters below Earth's surface. Here, we used laboratory reactors to perform manipulations of persisting shale microbial communities that are currently not feasible in field scenarios. Metaproteomic and metabolite findings from the laboratory were then corroborated using regression-based modeling performed on metagenomic and metabolite data from more than 40 produced fluids from five hydraulically fractured shale wells. Collectively, our findings show that Halanaerobium, Geotoga, and Methanohalophilus strain abundances predict a significant fraction of nitrogen and carbon metabolites in the field. Our laboratory findings also exposed cryptic predatory, cooperative, and competitive interactions that impact microorganisms across fractured shales. Scaling these results from the laboratory to the field identified mechanisms underpinning biogeochemical reactions, yielding knowledge that can be harnessed to potentially increase energy yields and inform management practices in hydraulically fractured shales.


Asunto(s)
Bacterias/metabolismo , Fracking Hidráulico , Consorcios Microbianos/fisiología , Gas Natural/microbiología , Bacterias/clasificación , Estados Unidos
4.
Phys Chem Chem Phys ; 22(25): 13951-13957, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32609114

RESUMEN

Adsorption of fluids in nanoporous materials is important for a variety of industries including catalysis and is a promising strategy for hydrogen storage and CO2 sequestration. It has therefore been studied extensively. In a typical adsorption experiment, the sorbent sample is usually in powder form which consists of several crystallites separated by an inter-crystalline space. This inter-crystalline space may compete with the nanopores in engineered as well as natural materials for fluid adsorption. While in computer simulations that are used to complement experiments, much attention is focused on the choice of force-field parameters, the effect of inter-crystalline spaces on the properties of adsorbed fluids remains largely ignored. We attempt to study the effects of inter-crystalline space on the simulated adsorption of ethane and CO2 modelled in TraPPE formalism in a silicalite model composed of crystallites separated by different inter-crystalline spaces. The effect of inter-crystalline space is found to be profound and differs for the two sorbates. Presence of quadrupole moment makes CO2 adsorption in the inter-crystalline space more favorable and suggests that increasing surface area of a catalytic substrate for enhanced adsorption might be a relatively more effective strategy for adsorption of a quadrupolar molecule as compared to an apolar molecule. Also, the results imply that in experiments investigating molecules confined in porous media using powder samples, apolar molecules are less likely to give undesired bulk-like contribution from inter-crystalline spaces to the experimental data. CO2 molecules adsorbed on the crystallite surfaces are found to exhibit a high degree of orientational ordering and exhibit a preferred orientation favorable for higher amounts of adsorption. While larger inter-crystalline spacings lead to higher adsorption, the effect of using a larger crystallite is to reduce the amount of adsorption. The mutual negation of these two effects explains the apparent agreement of the experimental data obtained on a powder sample and the simulation data obtained using a perfect crystal model. This work has implications for both simulations of adsorption isotherms in nanoporous materials and the interpretation of experimental data obtained for these systems.

5.
J Chem Phys ; 152(8): 084707, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32113366

RESUMEN

Fundamental understanding of the subcritical/supercritical behavior of key hydrocarbon species inside nano-porous matrices at elevated pressure and temperature is less developed compared to bulk fluids, but this knowledge is of great importance for chemical and energy engineering industries. This study explores in detail the structure and dynamics of ethane (C2H6) fluid confined in silica nanopores, with a focus on the effects of pressure and different ratios of C2H6 and CO2 at non-ambient temperature. Quasi-elastic neutron scattering (QENS) experiments were carried out for the pure C2H6, C2H6:CO2 = 3:1, and 1:3 mixed fluids confined in 4-nm cylindrical silica pores at three different pressures (30 bars, 65 bars, and 100 bars) at 323 K. Two Lorentzian functions were required to fit the spectra, corresponding to fast and slow translational motions. No localized motions (rotations and vibrations) were detected. Higher pressures resulted in hindrances of the diffusivity of C2H6 molecules in all systems investigated. Pore size was found to be an important factor, i.e., the dynamics of confined C2H6 is more restricted in smaller pores compared to the larger pores used in previous studies. Molecular dynamics simulations were performed to complement the QENS experiment at 65 bars, providing supportive structure information and comparable dynamic information. The simulations indicate that CO2 molecules are more strongly attracted to the pore surface compared to C2H6. The C2H6 molecules interacting with or near the pore surface form a dense first layer (L1) close to the pore surface and a second less dense layer (L2) extending into the pore center. Both the experiments and simulations revealed the role that CO2 molecules play in enhancing C2H6 diffusion ("molecular lubrication") at high CO2:C2H6 ratios. The energy scales of the two dynamic components, fast and slow, quantified by both techniques, are in very good agreement. Herein, the simulations identified the fast component as the main contributor to the dynamics. Molecule motions in the L2 region are mostly responsible for the dynamics (fast and slow) that can be detected by the instrument.

6.
J Chem Phys ; 150(4): 044703, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30709306

RESUMEN

Dopants have the potential to locally modify water-olivine interactions, which can impact geological processes, such as weathering, CO2 sequestration, and abiotic hydrocarbon generation. As a first step in understanding the role of dopants on the water structure and chemistry at water-olivine interfaces, water monomer adsorption on alkaline earth (AE) and transition metal (TM) doped forsterite(010) [Mg2SiO4(010)] surfaces was studied using density functional theory (DFT). Dopants that occur in olivine minerals were considered and consisted of Ca, Sr, and Ba for the AE dopants and Cr, Mn, Fe, Co, and Ni for the TM dopants. The water molecule adsorbs on the olivine surface through a metal-water bond (Me-Ow) and a hydrogen bond with an adjacent surface lattice oxygen (Ox-Hw). A frontier orbital analysis reveals that the 1b2, 3a1, and 1b1 (HOMO) of the water molecule are involved in the bonding. All of the TM dopants show strong net Me-Ow covalent bonding between 3a1 and 1b1 water orbitals and TM d states, while the AE dopants except for Mg2SiO4(010) show negligible Me-Ow covalent bonding. Both the AE and TM dopants show similar hydrogen bonding features involving both the 1b2 and 3a1 orbitals. While the AE cations show an overall lower Me-Ow covalent interaction, the AE dopants have strong electrostatic interactions between the positive metal cation and the negatively charged water dipole. A bonding model incorporating a linear combination of the covalent Me-Ow bond, the Ox-Hw hydrogen bond, the electrostatic interaction between the dopant cation and the H2O molecule, and the surface distortion energy is needed to capture the variation in the DFT adsorption energies on the olivine surfaces. The bonding analysis is able to identify the dominant contributions to water-dopant interactions and can serve as a basis for future studies of more realistic water-olivine interfaces.

7.
Environ Microbiol ; 20(12): 4596-4611, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30394652

RESUMEN

About 60% of natural gas production in the United States comes from hydraulic fracturing of unconventional reservoirs, such as shales or organic-rich micrites. This process inoculates and enriches for halotolerant microorganisms in these reservoirs over time, resulting in a saline ecosystem that includes methane producing archaea. Here, we survey the biogeography of methanogens across unconventional reservoirs, and report that members of genus Methanohalophilus are recovered from every hydraulically fractured unconventional reservoir sampled by metagenomics. We provide the first genomic sequencing of three isolate genomes, as well as two metagenome assembled genomes (MAGs). Utilizing six other previously sequenced isolate genomes and MAGs, we perform comparative analysis of the 11 genomes representing this genus. This genomic investigation revealed distinctions between surface and subsurface derived genomes that are consistent with constraints encountered in each environment. Genotypic differences were also uncovered between isolate genomes recovered from the same well, suggesting niche partitioning among closely related strains. These genomic substrate utilization predictions were then confirmed by physiological investigation. Fine-scale microdiversity was observed in CRISPR-Cas systems of Methanohalophilus, with genomes from geographically distinct unconventional reservoirs sharing spacers targeting the same viral population. These findings have implications for augmentation strategies resulting in enhanced biogenic methane production in hydraulically fractured unconventional reservoirs.


Asunto(s)
Fracking Hidráulico , Methanosarcinaceae/fisiología , Ecosistema , Genoma Bacteriano , Metagenoma , Methanosarcinaceae/genética , Gas Natural , Yacimiento de Petróleo y Gas
8.
Phys Chem Chem Phys ; 20(44): 27822-27829, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30382264

RESUMEN

The behavior of water on mineral surfaces is the key to understanding interfacial and chemical reaction processes. Olivine is one of the major rock-forming minerals and its interaction with water is a ubiquitous phenomenon both on Earth's surface and in the subsurface. This work presents a combined study using molecular dynamics (MD) simulations and quasi-elastic neutron scattering (QENS) experiments conducted using three different instruments to study the structure and dynamics of water on the forsterite (Mg-end member of olivine) surface at 270 K. A combination of three different QENS instruments probes dynamical processes occurring across a broad range of time scales (∼1 ps to ∼1 ns in this study). The water structure on the hydroxylated surface is composed of three distinct water layers, transitioning from well-ordered and nearly immobile closest to the surface to a less structured layer. The energies of three motions (including translation and rotation) derived from simulations agree well with the experiments, covering the energy range from a few to hundreds of micro electron volts.

9.
Langmuir ; 33(42): 11310-11320, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28910531

RESUMEN

Despite the multiple length and time scales over which fluid-mineral interactions occur, interfacial phenomena control the exchange of matter and impact the nature of multiphase flow, as well as the reactivity of C-O-H fluids in geologic systems. In general, the properties of confined fluids, and their influence on porous geologic phenomena are much less well understood compared to those of bulk fluids. We used equilibrium molecular dynamics simulations to study fluid systems composed of propane and water, at different compositions, confined within cylindrical pores of diameter ∼16 Šcarved out of amorphous silica. The simulations are conducted within a single cylindrical pore. In the simulated system all the dangling silicon and oxygen atoms were saturated with hydroxyl groups and hydrogen atoms, respectively, yielding a total surface density of 3.8 -OH/nm2. Simulations were performed at 300 K, at different bulk propane pressures, and varying the composition of the system. The structure of the confined fluids was quantified in terms of the molecular distribution of the various molecules within the pore as well as their orientation. This allowed us to quantify the hydrogen bond network and to observe the segregation of propane near the pore center. Transport properties were quantified in terms of the mean square displacement in the direction parallel to the pore axis, which allows us to extract self-diffusion coefficients. The diffusivity of propane in the cylindrical pore was found to depend on pressure, as well as on the amount of water present. It was found that the propane self-diffusion coefficient decreases with increasing water loading because of the formation of water bridges across the silica pores, at sufficiently high water content, which hinder propane transport. The rotational diffusion, the lifespan of hydrogen bonds, and the residence time of water molecules at contact with the silica substrate were quantified from the simulated trajectories using the appropriate autocorrelation functions. The simulations contribute to a better understanding of the molecular phenomena relevant to the behavior of fluids in the subsurface.

10.
Langmuir ; 33(6): 1359-1367, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28099024

RESUMEN

Characterization and modeling of the molecular-level behavior of simple hydrocarbon gases, such as methane, in the presence of both nonporous and nanoporous mineral matrices allows for predictive understanding of important processes in engineered and natural systems. In this study, changes in local electromagnetic environments of the carbon atoms in methane under conditions of high pressure (up to 130 bar) and moderate temperature (up to 346 K) were observed with 13C magic-angle spinning (MAS) NMR spectroscopy while the methane gas was mixed with two model solid substrates: a fumed nonporous, 12 nm particle size silica and a mesoporous silica with 200 nm particle size and 4 nm average pore diameter. Examination of the interactions between methane and the silica systems over temperatures and pressures that include the supercritical regime was allowed by a novel high pressure MAS sample containment system, which provided high resolution spectra collected under in situ conditions. For pure methane, no significant thermal effects were found for the observed 13C chemical shifts at all pressures studied here (28.2, 32.6, 56.4, 65.1, 112.7, and 130.3 bar). However, the 13C chemical shifts of resonances arising from confined methane changed slightly with changes in temperature in mixtures with mesoporous silica. The chemical shift values of 13C nuclides in methane change measurably as a function of pressure both in the pure state and in mixtures with both silica matrices, with a more pronounced shift when meso-porous silica is present. Molecular-level simulations utilizing GCMC, MD, and DFT confirm qualitatively that the experimentally measured changes are attributed to interactions of methane with the hydroxylated silica surfaces as well as densification of methane within nanopores and on pore surfaces.

11.
Philos Trans A Math Phys Eng Sci ; 374(2060)2016 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-26712646

RESUMEN

All-atom equilibrium molecular dynamics simulations were employed to investigate the behaviour of aqueous methane confined in 1-nm-wide pores obtained from different materials. Models for silica, alumina and magnesium oxide were used to construct the slit-shaped pores. The results show that methane solubility in confined water strongly depends on the confining material, with silica yielding the highest solubility in the systems considered here. The molecular structure of confined water differs within the three pores, and density fluctuations reveal that the silica pore is effectively less 'hydrophilic' than the other two pores considered. Comparing the water fluctuation autocorrelation function with local diffusion coefficients of methane across the hydrated pores we observed a direct proportional coupling between methane and water dynamics. These simulation results help to understand the behaviour of gas in water confined within narrow subsurface formations, with possible implications for fluid transport.

12.
Langmuir ; 30(27): 8066-77, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24933315

RESUMEN

The sorptivity, structure, and dynamics of liquid water-ethanol mixtures confined in alumina pores were studied by molecular dynamics simulations. Due to an effective stronger attraction between water and the alumina surface, our simulations show that water is preferentially adsorbed in alumina nanopores from bulk solutions of varying composition. These results are in good qualitative agreement with experimental data reported by Rao and Sircar (Adsorpt. Sci. Technol. 1993, 10, 93). Analysis of the simulated trajectories allows us to predict that water diffuses through the narrow pores more easily than ethanol, in part because of its smaller size. Our results suggest that ethanol has an antiplasticization effect on water within the narrow pores considered here, whereas it has a plasticization effect on water in the bulk. Rao and Sircar suggested that alumina could be used in concentration swing and/or concentration-thermal swing adsorption processes to separate water from ethanol. In addition, our results suggest the possibility of using alumina for manufacturing permselective membranes to produce anhydrous ethanol from liquid water-ethanol solutions.

13.
Environ Sci Technol ; 48(11): 6177-83, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24815551

RESUMEN

Induced mineral precipitation is potentially important for the remediation of contaminants, such as during mineral trapping during carbon or toxic metal sequestration. The prediction of precipitation reactions is complicated by the porous nature of rocks and soils and their interaction with the precipitate, introducing transport and confinement effects. Here X-ray scattering measurements, modeling, and electron microscopies were used to measure the kinetics of calcium carbonate precipitation in a porous amorphous silica (CPG) that contained two discrete distributions of pore sizes: nanopores and macropores. To examine the role of the favorability of interaction between the substrate and precipitate, some of the CPG was functionalized with a self-assembled monolayer (SAM) similar to those known to enhance nucleation densities on planar substrates. Precipitation was found to occur exclusively in macropores in the native CPG, while simultaneous precipitation in nanopores and macropores was observed in the functionalized CPG. The rate of precipitation in the nanopores estimated from the model of the X-ray scattering matched that measured on calcite single crystals. These results suggest that the pore-size distribution in which a precipitation reaction preferentially occurs depends on the favorability of interaction between substrate and precipitate, something not considered in most studies of precipitation in porous media.


Asunto(s)
Carbonato de Calcio/química , Nanoporos/ultraestructura , Precipitación Química , Modelos Teóricos , Porosidad , Dióxido de Silicio/química
14.
Energy Fuels ; 37(16): 11662-11674, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37609063

RESUMEN

The solubility of asphaltenes in hydrocarbons changes with pressure, composition, and temperature, leading to precipitation and deposition, thereby causing one of the crucial problems that negatively affects oil production, transportation, and processing. Because, in some circumstances, it might be advantageous to promote asphaltene agglomeration into small colloidal particles, molecular dynamics simulations were conducted here to understand the impacts of a chemical additive inspired by cyclohexane on the mechanism of aggregation of model island and archipelago asphaltene molecules in toluene. We compared the results in the presence and absence of a kaolinite surface at 300 and 400 K. Cluster size analyses, radial distribution functions, angles between asphaltenes, radius of gyration, and entropic and energetic calculations were used to provide insights on the behavior of these systems. The results show that the hypothetical additive inspired by cyclohexane promoted the aggregation of both asphaltenes. Structural differences were observed among the aggregates obtained in our simulations. These differences are attributed to the number of aromatic cores and side chains on the asphaltene molecules as well as to that of heteroatoms. For the island structure, aggregation in the bulk phase was less pronounced than that in the proximity of the kaolinite surface, whereas the opposite was observed for the archipelago structure. In both cases, the additive promoted stacking of asphaltenes, yielding more compact aggregates. The results provided insights into the complex nature of asphaltene aggregation, although computational approaches that can access longer time and larger size scales should be chosen for quantifying emergent meso- and macroscale properties of systems containing asphaltenes in larger numbers than those that can currently be sampled via atomistic simulations.

15.
Langmuir ; 28(11): 5070-8, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22369098

RESUMEN

The densities of pore-confined fluids were measured for the first time by means of vibrating tube densimetry (VTD). A custom-built high-pressure, high-temperature vibrating tube densimeter was used to measure the densities of propane at subcritical and supercritical temperatures (between 35 and 97 °C) and carbon dioxide at supercritical temperatures (between 32 and 50 °C) saturating hydrophobic silica aerogel (0.2 g/cm(3), 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, supercritical isotherms of excess adsorption for CO(2) and the same porous solid were measured gravimetrically using a precise magnetically coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum and then decreased toward zero or negative values above the critical density of the bulk fluid. The isotherms of confined fluid density and excess adsorption obtained by VTD contain additional information. For instance, the maxima of excess adsorption occur below the critical density of the bulk fluid at the beginning of the plateau region in the total adsorption, marking the end of the transition of pore fluid to a denser, liquidlike pore phase. Compression of the confined fluid significantly beyond the density of the bulk fluid at the same temperature was observed even at subcritical temperatures. The effect of pore confinement on the liquid-vapor critical temperature of propane was less than ~1.7 K. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. Good quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Thus, it is demonstrated that vibrating tube densimetry is a novel experimental approach capable of providing directly the average density of pore-confined fluids, and hence complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess).

16.
Membranes (Basel) ; 12(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36557180

RESUMEN

This study explores the fundamental, molecular- to microscopic-level behavior of methane gas confined into nanoporous silica proxies with different pore diameters and surface-to-volume (S/V) ratios. Surfaces and pore walls of nanoporous silica matrices are decorated with hydroxyl (-OH) groups, resembling natural heterogeneity. High-pressure MAS NMR was utilized to characterize the interactions between methane and the engineered nanoporous silica proxies under various temperature and pressure regimes. There was a change in the chemical shift position of confined methane slightly in the mixtures with nanoporous silica up to 393 K, as shown by high-pressure 13C-NMR. The 13C-NMR chemical shift of methane was changed by pressure, explained by the densification of methane inside the nanoporous silica materials. The influence of pore diameter and S/V of the nanoporous silica materials on the behaviors and dynamics of methane were studied. The presence of CO2 in mixtures of silica and methane needs analysis with caution because CO2 in a supercritical state and gaseous CO2 change the original structure of nanoporous silica and change surface area and pore volume. According to simulation, the picosecond scale dynamics of methane confined in larger pores of amorphous silica is faster. In the 4 nm pore, the diffusivity obtained from MD simulations in the pore with a higher S/V ratio is slower due to the trapping of methane molecules in adsorbed layers close to the corrugated pore surface. In contrast, relaxation measured with NMR for smaller pores (higher S/V) exhibits larger T1, indicating slower relaxation.

17.
J Chem Phys ; 134(4): 044706, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21280784

RESUMEN

Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.

18.
Front Chem ; 8: 734, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33005606

RESUMEN

We investigate dynamics of water (H2O) and methanol (CH3OH and CH3OD) inside mesoporous silica materials with pore diameters of 4.0, 2.5, and 1.5 nm using low-field (LF) nuclear magnetic resonance (NMR) relaxometry. Experiments were conducted to test the effects of pore size, pore volume, type of fluid, fluid/solid ratio, and temperature on fluid dynamics. Longitudinal relaxation times (T1) and transverse relaxation times (T2) were obtained for the above systems. We observe an increasing deviation in confined fluid behavior compared to that of bulk fluid with decreasing fluid-to-solid ratio. Our results show that the surface area-to-volume ratio is a critical parameter compared to pore diameter in the relaxation dynamics of confined water. An increase in temperature for the range between 25 and 50°C studied did not influence T2 times of confined water significantly. However, when the temperature was increased, T1 times of water confined in both silica-2.5 nm and silica-1.5 nm increased, while those of water in silica-4.0 nm did not change. Reductions in both T1 and T2 values as a function of fluid-to-solid ratio were independent of confined fluid species studied here. The parameter T1/T2 indicates that H2O interacts more strongly with the pore walls of silica-4.0 nm than CH3OH and CH3OD.

19.
Ecology ; 90(6): 1498-511, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19569365

RESUMEN

The 13C/12C ratio in pedogenic carbonate (i.e., CaCO3 formed in soil) is a significant tool for investigating C4 biomes of the past. However, the paleoecological meaning of delta13C values in pedogenic carbonate can change with the scale at which one considers the data. We describe studies of modern soils, fossil soils, and vegetation change in the Chihuahuan Desert of North America and elsewhere that reveal four scales important for paleoecologic interpretations. (1) At the broadest scale, the biome scale (hundreds to millions of km2), an isotopic record interpreted as C3 vegetation replacing C4 grasslands may indicate invading C3 woody shrubs instead of expanding C3 forests (a common interpretation). (2) At the landscape scale (several tens of m2 to hundreds of km2), the accuracy of scaling up paleoclimatic interpretations to a regional level is affected by the landform containing the isotopic record. (3) At the soil-profile scale (cm2 to m2), soil profiles with multiple generations of carbonate mixed together have a lower-resolution paleoecologic record than soil profiles repeatedly buried. (4) At the rhizosphere scale (microm2 to cm2), carbonate formed on roots lack the 14-17 per thousand enrichment observed at broader scales, revealing different fractionation processes at different scales. A multi-scale approach in dealing with delta13C in pedogenic carbonate will increase the accuracy of paleoecologic interpretations and understanding of soil-geomorphic-climatic interactions that affect boundaries between C4 and C3 vegetation.


Asunto(s)
Evolución Biológica , Carbonato de Calcio/química , Clima Desértico , Plantas/metabolismo , Isótopos de Carbono , Ecología/métodos , Geología , New Mexico , Raíces de Plantas , Suelo
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(5 Pt 1): 051504, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19518459

RESUMEN

Our quasielastic neutron-scattering experiments and molecular-dynamics simulations probing surface water on rutile (TiO2) have demonstrated that a sufficiently high hydration level is a prerequisite for the temperature-dependent crossover in the nanosecond dynamics of hydration water. Below the monolayer coverage of mobile surface water, a weak temperature dependence of the relaxation times with no apparent crossover is observed. We associate the dynamic crossover with interlayer jumps of the mobile water molecules, which become possible only at a sufficiently high hydration level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA