Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(32): e202402808, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-38764376

RESUMEN

Multimeric aptamers have gained more attention than their monomeric counterparts due to providing more binding sites for target analytes, leading to increased affinity. This work attempted to engineer the surface-based generation of multimeric aptamers by employing the room temperature rolling circle amplification (RCA) technique and chemically modified primers for developing a highly sensitive and selective electrochemical aptasensor. The multimeric aptamers, generated through surface RCA, are hybridized to modified spacer primers, facilitating the positioning of the aptamers in the proximity of sensing surfaces. These multimeric aptamers can be used as bio-receptors for capturing specific targets. The surface amplification process was fully characterized, and the optimal amplification time for biosensing purposes was determined, using SARS-CoV-2 spike protein (SP). Interestingly, multimeric aptasensors produced considerably higher response signals and affinity (more than 10-fold), as well as higher sensitivity (almost 4-fold) compared to monomeric aptasensors. Furthermore, the impact of surface structures on the response signals was studied by utilizing both flat working electrodes (WEs) and nano-/microislands (NMIs) WEs. The NMIs multimeric aptasensors showed significantly higher sensitivity in buffer and saliva media with the limit of detection less than 2 fg/ml. Finally, the developed NMIs multimeric aptasensors were clinically challenged with several saliva patient samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Técnicas de Amplificación de Ácido Nucleico , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Conformación de Ácido Nucleico , Propiedades de Superficie , ADN Circular/química , ADN Circular/genética , Amplificación de Genes , Humanos , COVID-19/diagnóstico , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Técnicas de Amplificación de Ácido Nucleico/métodos , Glicoproteína de la Espiga del Coronavirus/genética
2.
Sensors (Basel) ; 18(8)2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30081512

RESUMEN

OBJECTIVES: The aim of this work is to provide a scoping review to compile and classify the systems helping train and enhance psychomotor skills in hearing impaired (HI) children. METHODS: Based on an exhaustive review on psychomotor deficits in HI children, the procedure used to carry out a scoping review was: select keywords and identify synonyms, select databases and prepare the queries using keywords, analyze the quality of the works found using the PEDro Scale, classify the works based on psychomotor competences, analyze the interactive systems (e.g., sensors), and the achieved results. RESULTS: Thirteen works were found. These works used a variety of sensors and input devices such as cameras, contact sensors, touch screens, mouse and keyboard, tangible objects, haptic and virtual reality (VR) devices. CONCLUSIONS: From the research it was possible to contextualize the deficits and psychomotor problems of HI children that prevent their normal development. Additionally, from the analysis of different proposals of interactive systems addressed to this population, it was possible to establish the current state of the use of different technologies and how they contribute to psychomotor rehabilitation.


Asunto(s)
Pérdida Auditiva/fisiopatología , Pérdida Auditiva/rehabilitación , Desempeño Psicomotor , Niño , Humanos , Tecnología , Interfaz Usuario-Computador , Realidad Virtual
3.
Sensors (Basel) ; 18(7)2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973549

RESUMEN

Information and Communication Technologies (ICTs) have grown exponentially in the education context and the use of digital products by children is increasing. As a result, teachers are taking advantage of ICTs to include mobile devices such as Tablets or Smartphones inside the classroom as playful support material to motivate children during their learning. Designing an interactive experience for a child with a special need such as a hearing impairment is a great challenge. In this article, two interactive systems are depicted, using a non-traditional interaction, by the following stages: analysis, design and implementation, with the participation of children with cochlear implant in the Institute of Blind and Deaf Children of Valle del Cauca, Colombia and the ASPAS Institute, Mallorca, Spain, who evaluated both interactive systems, PHONOMAGIC and CASETO. Positive results were obtained, showing that the use of real objects can greatly influence the environment in which children interact with the game, allowing them to explore and manipulate the objects supporting their teaching-learning processes.


Asunto(s)
Estimulación Acústica , Implantes Cocleares , Sordera/psicología , Niño , Implantación Coclear , Colombia , Femenino , Humanos , Masculino , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA