Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 24(5): 867-76, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26857842

RESUMEN

We previously reported that subretinal injection of AAV2/5 RK.cpde6ß allowed long-term preservation of photoreceptor function and vision in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6ß deficiency. The present study builds on these earlier findings to provide a detailed assessment of the long-term effects of gene therapy on the spatiotemporal pattern of retinal degeneration in rcd1 dogs treated at 20 days of age. We analyzed the density distribution of the retinal layers and of particular photoreceptor cells in 3.5-year-old treated and untreated rcd1 dogs. Whereas no rods were observed outside the bleb or in untreated eyes, gene transfer halted rod degeneration in all vector-exposed regions. Moreover, while gene therapy resulted in the preservation of cones, glial cells and both the inner nuclear and ganglion cell layers, no cells remained in vector-unexposed retinas, except in the visual streak. Finally, the retinal structure of treated 3.5-year-old rcd1 dogs was identical to that of unaffected 4-month-old rcd1 dogs, indicating near complete preservation. Our findings indicate that gene therapy arrests the degenerative process even if intervention is initiated after the onset of photoreceptor degeneration, and point to significant potential of this therapeutic approach in future clinical trials.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Terapia Genética/métodos , Degeneración Retiniana/terapia , Células Fotorreceptoras Retinianas Bastones/patología , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/deficiencia , Dependovirus/genética , Modelos Animales de Enfermedad , Perros , Vectores Genéticos/administración & dosificación , Humanos , Retina/fisiopatología , Degeneración Retiniana/genética , Degeneración Retiniana/patología
2.
Mol Ther ; 22(4): 762-73, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24343103

RESUMEN

Severe deficiency in lysosomal ß-glucuronidase (ß-glu) enzymatic activity results in mucopolysaccharidosis (MPS) VII, an orphan disease with symptoms often appearing in early childhood. Symptoms are variable, but many patients have multiple organ disorders including neurological defects. At the cellular level, deficiency in ß-glu activity leads to abnormal accumulation of glycosaminoglycans (GAGs), and secondary accumulation of GM2 and GM3 gangliosides, which have been linked to neuroinflammation. There have been encouraging gene transfer studies in the MPS VII mouse brain, but this is the first study attempting the correction of the >200-fold larger and challenging canine MPS VII brain. Here, the efficacy of a helper-dependent (HD) canine adenovirus (CAV-2) vector harboring a human GUSB expression cassette (HD-RIGIE) in the MPS VII dog brain was tested. Vector genomes, ß-glu activity, GAG content, lysosome morphology and neuropathology were analyzed and quantified. Our data demonstrated that CAV-2 vectors preferentially transduced neurons and axonal retrograde transport from the injection site to efferent regions was efficient. HD-RIGIE injections, associated with mild and transient immunosuppression, corrected neuropathology in injected and noninjected structures throughout the cerebrum. These data support the clinical evaluation of HD CAV-2 vectors to treat the neurological defects associated with MPS VII and possibly other neuropathic lysosomal storage diseases.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética , Mucopolisacaridosis VII/genética , beta-Glucosidasa/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Perros , Regulación Enzimológica de la Expresión Génica , Glicosaminoglicanos/metabolismo , Humanos , Ratones , Mucopolisacaridosis VII/terapia , Mucopolisacaridosis VII/veterinaria , beta-Glucosidasa/administración & dosificación , beta-Glucosidasa/biosíntesis
3.
Mol Ther ; 22(2): 265-277, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24091916

RESUMEN

For the development of new therapies, proof-of-concept studies in large animal models that share clinical features with their human counterparts represent a pivotal step. For inherited retinal dystrophies primarily involving photoreceptor cells, the efficacy of gene therapy has been demonstrated in canine models of stationary cone dystrophies and progressive rod-cone dystrophies but not in large models of progressive cone-rod dystrophies, another important cause of blindness. To address the last issue, we evaluated gene therapy in the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1)-deficient dog, a model exhibiting a severe cone-rod dystrophy similar to that seen in humans. Subretinal injection of AAV5 (n = 5) or AAV8 (n = 2) encoding the canine Rpgrip1 improved photoreceptor survival in transduced areas of treated retinas. Cone function was significantly and stably rescued in all treated eyes (18-72% of those recorded in normal eyes) up to 24 months postinjection. Rod function was also preserved (22-29% of baseline function) in four of the five treated dogs up to 24 months postinjection. No detectable rod function remained in untreated contralateral eyes. More importantly, treatment preserved bright- and dim-light vision. Efficacy of gene therapy in this large animal model of cone-rod dystrophy provides great promise for human treatment.


Asunto(s)
Proteínas del Ojo/genética , Terapia Genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Animales , Animales Modificados Genéticamente , Dependovirus/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perros , Expresión Génica , Técnicas de Inactivación de Genes , Orden Génico , Técnicas de Transferencia de Gen , Genes Reporteros , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Regiones Promotoras Genéticas , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retinitis Pigmentosa/patología , Transducción Genética , Resultado del Tratamiento
4.
Mol Ther ; 20(11): 2019-30, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22828504

RESUMEN

Defects in the ß subunit of rod cGMP phosphodiesterase 6 (PDE6ß) are associated with autosomal recessive retinitis pigmentosa (RP), a childhood blinding disease with early retinal degeneration and vision loss. To date, there is no treatment for this pathology. The aim of this preclinical study was to test recombinant adeno-associated virus (AAV)-mediated gene addition therapy in the rod-cone dysplasia type 1 (rcd1) dog, a large animal model of naturally occurring PDE6ß deficiency that strongly resembles the human pathology. A total of eight rcd1 dogs were injected subretinally with AAV2/5RK.cpde6ß (n = 4) or AAV2/8RK.cpde6ß (n = 4). In vivo and post-mortem morphological analysis showed a significant preservation of the retinal structure in transduced areas of both AAV2/5RK.cpde6ß- and AAV2/8RK.cpde6ß-treated retinas. Moreover, substantial rod-derived electroretinography (ERG) signals were recorded as soon as 1 month postinjection (35% of normal eyes) and remained stable for at least 18 months (the duration of the study) in treated eyes. Rod-responses were undetectable in untreated contralateral eyes. Most importantly, dim-light vision was restored in all treated rcd1 dogs. These results demonstrate for the first time that gene therapy effectively restores long-term retinal function and vision in a large animal model of autosomal recessive rod-cone dystrophy, and provide great promise for human treatment.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/deficiencia , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Retinitis Pigmentosa/terapia , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Perros , Electrorretinografía , Terapia Genética , Vectores Genéticos , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Recuperación de la Función , Retina/metabolismo , Retina/patología , Retina/fisiopatología , Vasos Retinianos/patología , Retinitis Pigmentosa/fisiopatología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transgenes , Resultado del Tratamiento , Visión Ocular
5.
Hum Mol Genet ; 19(1): 147-58, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19837699

RESUMEN

Metachromatic leukodystrophy (MLD) is a lethal neurodegenerative disease caused by a deficiency in the lysosomal arylsulfatase A (ARSA) enzyme leading to the accumulation of sulfatides in glial and neuronal cells. We previously demonstrated in ARSA-deficient mice that intracerebral injection of a serotype 5 adeno-associated vector (AAV) encoding human ARSA corrects the biochemical, neuropathological and behavioral abnormalities. However, before considering a potential clinical application, scaling-up issues should be addressed in large animals. Therefore, we performed intracerebral injection of the same AAV vector (total dose of 3.8 x 10(11) or 1.9 x 10(12) vector genome, three sites of injection in the right hemisphere, two deposits per site of injection) into three selected areas of the centrum semiovale white matter, or in the deep gray matter nuclei (caudate nucleus, putamen, thalamus) of six non-human primates to evaluate vector distribution, as well as expression and activity of human ARSA. The procedure was perfectly tolerated, without any adverse effect or change in neurobehavioral examination. AAV vector was detected in a brain volume of 12-15 cm(3) that corresponded to 37-46% of the injected hemisphere. ARSA enzyme was expressed in multiple interconnected brain areas over a distance of 22-33 mm. ARSA activity was increased by 12-38% in a brain volume that corresponded to 50-65% of injected hemisphere. These data provide substantial evidence for potential benefits of brain gene therapy in patients with MLD.


Asunto(s)
Cerebrósido Sulfatasa/genética , Dependovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Primates/genética , Animales , Anticuerpos/sangre , Anticuerpos/líquido cefalorraquídeo , Cerebelo/metabolismo , Nervios Craneales/metabolismo , Difusión , Vectores Genéticos/farmacocinética , Humanos , Inflamación/patología , Inyecciones Intraventriculares , Tamaño de los Órganos , Transporte de Proteínas , Médula Espinal/metabolismo , Técnicas Estereotáxicas
6.
Mol Ther ; 19(2): 251-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21139569

RESUMEN

Recent trials in patients with neurodegenerative diseases documented the safety of gene therapy based on adeno-associated virus (AAV) vectors deposited into the brain. Inborn errors of the metabolism are the most frequent causes of neurodegeneration in pre-adulthood. In Sanfilippo syndrome, a lysosomal storage disease in which heparan sulfate oligosaccharides accumulate, the onset of clinical manifestation is before 5 years. Studies in the mouse model showed that gene therapy providing the missing enzyme α-N-acetyl-glucosaminidase to brain cells prevents neurodegeneration and improves behavior. We now document safety and efficacy in affected dogs. Animals received eight deposits of a serotype 5 AAV vector, including vector prepared in insect Sf9 cells. As shown previously in dogs with the closely related Hurler syndrome, immunosuppression was necessary to prevent neuroinflammation and elimination of transduced cells. In immunosuppressed dogs, vector was efficiently delivered throughout the brain, induced α-N-acetyl-glucosaminidase production, cleared stored compounds and storage lesions. The suitability of the procedure for clinical application was further assessed in Hurler dogs, providing information on reproducibility, tolerance, appropriate vector type and dosage, and optimal age for treatment in a total number of 25 treated dogs. Results strongly support projects of human trials aimed at assessing this treatment in Sanfilippo syndrome.


Asunto(s)
Encéfalo/metabolismo , Terapia Genética/métodos , Mucopolisacaridosis III/terapia , Mucopolisacaridosis I/terapia , Acetilglucosaminidasa/genética , Animales , Encéfalo/patología , Dependovirus/genética , Modelos Animales de Enfermedad , Perros , Terapia Genética/efectos adversos , Vectores Genéticos/genética , Reacción en Cadena de la Polimerasa
7.
Am J Pathol ; 177(6): 2984-99, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21037080

RESUMEN

The accumulation of intracellular storage vesicles is a hallmark of lysosomal storage diseases. Neither the identity nor origin of these implicated storage vesicles have yet been established. The vesicles are often considered as lysosomes, endosomes, and/or autophagosomes that are engorged with undigested materials. Our studies in the mouse model of mucopolysaccharidosis type IIIB, a lysosomal storage disease that induces neurodegeneration, showed that large storage vesicles in cortical neurons did not receive material from either the endocytic or autophagy pathway, which functioned normally. Storage vesicles expressed GM130, a Golgi matrix protein, which mediates vesicle tethering in both pre- and cis-Golgi compartments. However, other components of the tethering/fusion complex were not associated with GM130 on storage vesicles, likely accounting for both the resistance of the vesicles to brefeldin A and the alteration of Golgi ribbon architecture, which comprised distended cisterna connected to LAMP1-positive storage vesicles. We propose that alteration in the GM130-mediated control of vesicle trafficking in pre-Golgi and Golgi compartments affects Golgi biogenesis and gives rise to a dead-end storage compartment. Vesicle accumulation, Golgi disorganization, and alterations of other GM130 functions may account for neuron dysfunction and death.


Asunto(s)
Vesículas Citoplasmáticas/patología , Aparato de Golgi/patología , Neuronas/ultraestructura , Animales , Autofagia/fisiología , Transporte Biológico/fisiología , Células Cultivadas , Vesículas Citoplasmáticas/metabolismo , Modelos Animales de Enfermedad , Aparato de Golgi/metabolismo , Lisosomas/metabolismo , Lisosomas/patología , Proteínas de la Membrana/metabolismo , Redes y Vías Metabólicas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mucopolisacaridosis III/complicaciones , Mucopolisacaridosis III/metabolismo , Mucopolisacaridosis III/patología , Neuronas/metabolismo , Neuronas/patología , Neuronas/fisiología
8.
Exp Eye Res ; 93(4): 491-502, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21723863

RESUMEN

Systemic delivery of recombinant adeno-associated virus (rAAV) vectors has recently been shown to cross the blood brain barrier in rodents and large animals and to efficiently target cells of the central nervous system. Such approach could be particularly interesting to treat lysosomal storage diseases or neurodegenerative disorders characterized by multiple organs injuries especially neuronal and retinal dysfunctions. However, the ability of rAAV vector to cross the blood retina barrier and to transduce retinal cells after systemic injection has not been precisely determined. In this study, gene transfer was investigated in the retina of neonatal and adult rats after intravenous injection of self-complementary (sc) rAAV serotype 1, 5, 6, 8, and 9 carrying a CMV-driven green fluorescent protein (GFP), by fluorescence fundus photography and histological examination. Neonatal rats injected with scAAV2/9 vector displayed the strongest GFP expression in the retina, within the retinal pigment epithelium (RPE) cells. Retinal tropism of scAAV2/9 vector was further assessed after systemic delivery in large animal models, i.e., dogs and cats. Interestingly, efficient gene transfer was observed in the RPE cells of these two large animal models following neonatal intravenous injection of the vector. The ability of scAAV2/9 to transduce simultaneously neurons in the central nervous system, and RPE cells in the retina, after neonatal systemic delivery, makes this approach potentially interesting for the treatment of infantile neurodegenerative diseases characterized by both neuronal and retinal damages.


Asunto(s)
Dependovirus/genética , Expresión Génica/fisiología , Técnicas de Transferencia de Gen , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Gatos , ADN Complementario , Perros , Femenino , Angiografía con Fluoresceína , Proteínas Fluorescentes Verdes/inmunología , Inyecciones Intravenosas , Embarazo , Ratas , Ratas Sprague-Dawley , Transgenes
9.
Mol Ther ; 17(7): 1187-96, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19367261

RESUMEN

Therapeutic gene delivery to the whole spinal cord is a major challenge for the treatment of motor neuron (MN) diseases. Systemic administration of viral gene vectors would provide an optimal means for the long-term delivery of therapeutic molecules from blood to the spinal cord but this approach is hindered by the presence of the blood-brain barrier (BBB). Here, we describe the first successful study of MN transduction in adult animals following intravenous (i.v.) delivery of self-complementary (sc) AAV9 vectors (up to 28% in mice). Intravenous MN transduction was achieved in adults without pharmacological disruption of the BBB and transgene expression lasted at least 5 months. Importantly, this finding was successfully translated to large animals, with the demonstration of an efficient systemic scAAV9 gene delivery to the neonate and adult cat spinal cord. This new and noninvasive procedure raises the hope of whole spinal cord correction of MN diseases and may lead to the development of new gene therapy protocols in patients.


Asunto(s)
Adenoviridae/genética , Vectores Genéticos/genética , Transducción Genética/métodos , Animales , Animales Recién Nacidos , Gatos , Ensayo de Inmunoadsorción Enzimática , Femenino , Vectores Genéticos/administración & dosificación , Inmunohistoquímica , Bombas de Infusión , Ratones , Ratones Endogámicos C57BL , Enfermedad de la Neurona Motora/terapia , Embarazo , Médula Espinal/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
J Zoo Wildl Med ; 41(1): 104-10, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20722261

RESUMEN

In April 2007, two newborn springboks (Antidorcas marsupialis) from a zoo of southern France were found dead. Necropsy was performed on the two animals and revealed arthrogryposis, mild facial structural abnormalities, and bilateral enlargement of the kidneys with concurrent hydronephrosis in both newborns. Histopathologically, extensive cytoplasmic vacuolation of neurons in the central nervous system, thyroid follicular epithelium, renal tubular epithelium, enterocytes, hepatocytes, and ruminal epithelial cells was the most remarkable lesion in both animals. By electron microscopy, the vacuoles were membrane bound and contained scattered membranous and granular material within a primarily electron-lucent background. Hence, a diagnosis of lysosomal storage disease was established, with gross, histological, and ultrastructural features suggestive of an inherited form of mannosidosis. This report documents the first case of lysosomal storage disease in springboks.


Asunto(s)
Antílopes , Enfermedades por Almacenamiento Lisosomal/veterinaria , Animales , Sistema Nervioso Central/patología , Resultado Fatal , Predisposición Genética a la Enfermedad , Riñón/patología , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/patología , Masculino
11.
Mol Ther Methods Clin Dev ; 17: 771-784, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32355866

RESUMEN

The identification of the most efficient method for whole central nervous system targeting that is translatable to humans and the safest route of adeno-associated virus (AAV) administration is a major concern for future applications in clinics. Additionally, as many AAV serotypes were identified for gene introduction into the brain and the spinal cord, another key to human gene-therapy success is to determine the most efficient serotype. In this study, we compared lumbar intrathecal administration through catheter implantation and intracerebroventricular administration in the cynomolgus macaque. We also evaluated and compared two AAV serotypes that are currently used in clinical trials: AAV9 and AAVrh10. We demonstrated that AAV9 lumbar intrathecal delivery using a catheter achieved consistent transgene expression in the motor neurons of the spinal cord and in the neurons/glial cells of several brain regions, whereas AAV9 intracerebroventricular delivery led to a consistent transgene expression in the brain. In contrast, AAVrh10 lumbar intrathecal delivery led to rare motor neuron targeting. Finally, we found that AAV9 efficiently targets respiratory and skeletal muscles after injection into the cerebrospinal fluid (CSF), which represents an outstanding new property that can be useful for the treatment of diseases affecting both the central nervous system and muscle.

12.
Avian Pathol ; 38(1): 9-11, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19130351

RESUMEN

Ocular opacity, associated with reluctance to move and inability to feed properly, was observed in approximately 1% of all newly hatched females from several related flocks of Mulard ducks. A 5-week follow-up study of 10 1-day-old affected females was performed, and they were compared with 10 control animals. Clinical, ocular and ultrasonographic examinations, and a complete necropsy of two animals per group with histological examination of the eye, were performed weekly. A bilateral immature cortical anterior cataract was diagnosed at ocular examination and confirmed by ultrasonography in affected ducks. Dyscoria was occasionally observed in affected animals. Severe cataract, with Morgagnian globules, severe anterior fibre liquefaction and disorganization were observed by photonic microscopy. No retinal or choroidal lesions were observed. No progression or repair of ultrasonographic and microscopic lesions could be detected during the 5 weeks of examination. The female predisposition for the ocular lesions suggests a congenital sex-linked recessive cataract.


Asunto(s)
Catarata/veterinaria , Patos , Enfermedades de las Aves de Corral/congénito , Animales , Catarata/congénito , Catarata/genética , Catarata/patología , Femenino , Predisposición Genética a la Enfermedad , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/patología
13.
Mol Ther ; 16(5): 916-23, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18388922

RESUMEN

Recombinant adeno-associated virus (rAAV) vectors are among the most efficient gene delivery vehicles for gene transfer to the retina. This study evaluates the behavior of the rAAV8 serotype vector with regard to intraocular delivery in rats and dogs. Subretinal delivery of an AAV2/8.gfp vector results in efficient gene transfer in the retinal pigment epithelium (RPE), the photoreceptors and, surprisingly, in the cells of the inner nuclear layer as well as in ganglion cells. Most importantly, in dogs, gene transfer also occurred distal to the injection site in neurons of the lateral geniculate nucleus of the brain. Because green fluorescent protein (GFP) was detected along the visual pathway within the brain, we analyzed total DNA extracted from various brain slices using PCR. Vector sequences were detected in many parts of the brain, but chiefly in the contralateral hemisphere.


Asunto(s)
Encéfalo/metabolismo , Dependovirus/metabolismo , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos , Neuronas/metabolismo , Retina/metabolismo , Animales , Núcleo Celular/metabolismo , Perros , Proteínas Fluorescentes Verdes/metabolismo , Epitelio Pigmentado Ocular/metabolismo , Reacción en Cadena de la Polimerasa , Ratas , Ratas Wistar
14.
Acta Neuropathol Commun ; 6(1): 116, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30382921

RESUMEN

Pompe disease, which is due to acid alpha-glucosidase deficiency, is characterized by skeletal muscle dysfunction attributed to the accumulation of glycogen-filled lysosomes and autophagic buildup. Despite the extensive tissue damages, a failure of satellite cell (SC) activation and lack of muscle regeneration have been reported in patients. However, the origin of this defective program is unknown. Additionally, whether these deficits occur gradually over the disease course is unclear. Using a longitudinal pathophysiological study of two muscles in a Pompe mouse model, here, we report that the enzymatic defect results in a premature saturating glycogen overload and a high number of enlarged lysosomes. The muscles gradually display profound remodeling as the number of autophagic vesicles, centronucleated fibers, and split fibers increases and larger fibers are lost. Only a few regenerated fibers were observed regardless of age, although the SC pool was preserved. Except for the early age, during which higher numbers of activated SCs and myoblasts were observed, no myogenic commitment was observed in response to the damage. Following in vivo injury, we established that muscle retains regenerative potential, demonstrating that the failure of SC participation in repair is related to an activation signal defect. Altogether, our findings provide new insight into the pathophysiology of Pompe disease and highlight that the activation signal defect of SCs compromises muscle repair, which could be related to the abnormal energetic supply following autophagic flux impairment.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , Músculo Esquelético/fisiopatología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/fisiología , Factores de Edad , Animales , Autofagia/genética , Cardiotoxinas/toxicidad , Colágeno/metabolismo , Modelos Animales de Enfermedad , Distrofina/metabolismo , Regulación de la Expresión Génica/genética , Glucano 1,4-alfa-Glucosidasa/deficiencia , Glucano 1,4-alfa-Glucosidasa/genética , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/etiología , Humanos , Antígeno Ki-67/metabolismo , Laminina/metabolismo , Estudios Longitudinales , Lisosomas/metabolismo , Lisosomas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/lesiones , Regeneración/genética
15.
J Zoo Wildl Med ; 38(2): 323-8, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17679518

RESUMEN

A 15-year-old female harbor seal (Phoca vitulina) was referred to the Nantes Veterinary School, Nantes, France, with a clinical history of anorexia, seizures, and left hemiplegia. Cerebrospinal fluid analysis revealed large numbers of neoplastic lymphoid cells. After injection of a contrast agent into the cerebrospinal space, radiographs demonstrated an asymmetry of the right lateral ventricle. Necropsy examination revealed a marked edema of the right frontal lobe, extending to the basal nuclei and thalamus in the brain. Histological examination of the brain revealed leptomeningeal lymphoma. Immunohistochemical labeling demonstrated that the neoplasm was of T-cell origin. No significant macroscopic or microscopic lesions were observed in the other organs examined, including lymphoid organs. This is the first report of primary leptomeningeal lymphoma in a harbor seal.


Asunto(s)
Linfoma de Células T/veterinaria , Neoplasias Meníngeas/veterinaria , Phoca , Animales , Diagnóstico Diferencial , Resultado Fatal , Femenino , Inmunohistoquímica/veterinaria , Linfoma de Células T/diagnóstico , Linfoma de Células T/patología , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/patología
16.
ACS Nano ; 11(7): 6672-6681, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28644009

RESUMEN

In order to assess the therapeutic potential of cell-based strategies, it is of paramount importance to elaborate and validate tools for monitoring the behavior of injected cells in terms of tissue dissemination and engraftment properties. Here, we apply bismuth ferrite harmonic nanoparticles (BFO HNPs) to in vitro expanded human skeletal muscle-derived stem cells (hMuStem cells), an attractive therapeutic avenue for patients suffering from Duchenne muscular dystrophy (DMD). We demonstrate the possibility of stem cell labeling with HNPs. We also show that the simultaneous acquisition of second- and third-harmonic generation (SHG and THG) from BFO HNPs helps separate their response from tissue background, with a net increase in imaging selectivity, which could be particularly important in pathologic context that is defined by a highly remodelling tissue. We demonstrate the possibility of identifying <100 nm HNPs in depth of muscle tissue at more than 1 mm from the surface, taking full advantage of the extended imaging penetration depth allowed by multiphoton microscopy in the second near-infrared window (NIR-II). Based on this successful assessment, we monitor over 14 days any modification on proliferation and morphology features of hMuStem cells upon exposure to PEG-coated BFO HNPs at different concentrations, revealing their high biocompatibility. Successively, we succeed in detecting individual HNP-labeled hMuStem cells in skeletal muscle tissue after their intramuscular injection.


Asunto(s)
Bismuto/análisis , Rastreo Celular/métodos , Compuestos Férricos/análisis , Músculo Esquelético/citología , Nanopartículas/análisis , Imagen Óptica/métodos , Células Madre/citología , Adolescente , Animales , Células Cultivadas , Niño , Humanos , Rayos Infrarrojos , Ratones , Músculo Esquelético/diagnóstico por imagen , Distrofia Muscular de Duchenne/diagnóstico por imagen , Distrofia Muscular de Duchenne/terapia , Trasplante de Células Madre
17.
Hum Gene Ther Methods ; 27(3): 122-34, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27229628

RESUMEN

Recombinant adeno-associated virus (AAV) has emerged as a promising vector for retinal gene delivery to restore visual function in certain forms of inherited retinal dystrophies. Several studies in rodent models have shown that intravitreal injection of the AAV2/2 vector is the optimal route for efficient retinal ganglion cell (RGC) transduction. However, translation of these findings to larger species, including humans, is complicated by anatomical differences in the eye, a key difference being the comparatively smaller volume of the vitreous chamber in rodents. Here, we address the role of the vitreous body as a potential barrier to AAV2/2 diffusion and transduction in the RGCs of dogs and macaques, two of the most relevant preclinical models. We intravitreally administered the AAV2/2 vector carrying the CMV-eGFP reporter cassette in dog and macaque eyes, either directly into the vitreous chamber or after complete vitrectomy, a surgical procedure that removes the vitreous body. Our findings suggest that the vitreous body appears to trap the injected vector, thus impairing the diffusion and transduction of AAV2/2 to inner retinal neurons. We show that vitrectomy before intravitreal vector injection is an effective means of overcoming this physical barrier, improving the transduction of RGCs in dog and macaque retinas. These findings support the use of vitrectomy in clinical trials of intravitreal gene transfer techniques targeting inner retinal neurons.


Asunto(s)
Terapia Genética , Vectores Genéticos/uso terapéutico , Células Ganglionares de la Retina , Animales , Dependovirus/genética , Perros , Técnicas de Transferencia de Gen , Proteínas Fluorescentes Verdes , Humanos , Inyecciones Intravítreas , Macaca , Retina/patología , Retina/trasplante , Transducción Genética , Vitrectomía
18.
Hum Gene Ther Clin Dev ; 26(2): 113-24, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25758611

RESUMEN

No treatment is available for early-onset forms of metachromatic leukodystrophy (MLD), a lysosomal storage disease caused by autosomal recessive defect in arylsulfatase A (ARSA) gene causing severe demyelination in central and peripheral nervous systems. We have developed a gene therapy approach, based on intracerebral administration of AAVrh.10-hARSA vector, coding for human ARSA enzyme. We have previously demonstrated potency of this approach in MLD mice lacking ARSA expression. We describe herein the preclinical efficacy, safety, and biodistribution profile of intracerebral administration of AAVrh.10-hARSA to nonhuman primates (NHPs). NHPs received either the dose planned for patients adjusted to the brain volume ratio between child and NHP (1×dose, 1.1×10(11) vg/hemisphere, unilateral or bilateral injection) or 5-fold this dose (5×dose, 5.5×10(11) vg/hemisphere, bilateral injection). NHPs were subjected to clinical, biological, and brain imaging observations and were euthanized 7 or 90 days after injection. There was no toxicity based on clinical and biological parameters, nor treatment-related histological findings in peripheral organs. A neuroinflammatory process correlating with brain MRI T2 hypersignals was observed in the brain 90 days after administration of the 5×dose, but was absent or minimal after administration of the 1×dose. Antibody response to AAVrh.10 and hARSA was detected, without correlation with brain lesions. After injection of the 1×dose, AAVrh.10-hARSA vector was detected in a large part of the injected hemisphere, while ARSA activity exceeded the normal endogenous activity level by 14-31%. Consistently with other reports, vector genome was detected in off-target organs such as liver, spleen, lymph nodes, or blood, but not in gonads. Importantly, AAVrh.10-hARSA vector was no longer detectable in urine at day 7. Our data demonstrate requisite safe and effective profile for intracerebral AAVrh.10-hARSA delivery in NHPs, supporting its clinical use in children affected with MLD.


Asunto(s)
Cerebrósido Sulfatasa/genética , Dependovirus/genética , Leucodistrofia Metacromática/terapia , Animales , Encéfalo/metabolismo , Cerebrósido Sulfatasa/metabolismo , Niño , Terapia Genética , Vectores Genéticos , Humanos , Macaca fascicularis , Masculino
19.
PLoS Negl Trop Dis ; 8(12): e3354, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474568

RESUMEN

The recent epidemic of the arthritogenic alphavirus, chikungunya virus (CHIKV) has prompted a quest to understand the correlates of protection against virus and disease in order to inform development of new interventions. Herein we highlight the propensity of CHIKV infections to persist long term, both as persistent, steady-state, viraemias in multiple B cell deficient mouse strains, and as persistent RNA (including negative-strand RNA) in wild-type mice. The knockout mouse studies provided evidence for a role for T cells (but not NK cells) in viraemia suppression, and confirmed the role of T cells in arthritis promotion, with vaccine-induced T cells also shown to be arthritogenic in the absence of antibody responses. However, MHC class II-restricted T cells were not required for production of anti-viral IgG2c responses post CHIKV infection. The anti-viral cytokines, TNF and IFNγ, were persistently elevated in persistently infected B and T cell deficient mice, with adoptive transfer of anti-CHIKV antibodies unable to clear permanently the viraemia from these, or B cell deficient, mice. The NOD background increased viraemia and promoted arthritis, with B, T and NK deficient NOD mice showing high-levels of persistent viraemia and ultimately succumbing to encephalitic disease. In wild-type mice persistent CHIKV RNA and negative strand RNA (detected for up to 100 days post infection) was associated with persistence of cellular infiltrates, CHIKV antigen and stimulation of IFNα/ß and T cell responses. These studies highlight that, secondary to antibodies, several factors are involved in virus control, and suggest that chronic arthritic disease is a consequence of persistent, replicating and transcriptionally active CHIKV RNA.


Asunto(s)
Fiebre Chikungunya/inmunología , Virus Chikungunya/inmunología , Enfermedad Aguda , Animales , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Fiebre Chikungunya/genética , Fiebre Chikungunya/virología , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , ARN Viral/análisis , Linfocitos T/inmunología
20.
Hum Gene Ther ; 24(7): 670-82, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23799774

RESUMEN

On the basis of previous studies suggesting that vascular endothelial growth factor (VEGF) could protect motor neurons from degeneration, adeno-associated virus vectors (serotypes 1 and 9) encoding VEGF (AAV.vegf) were administered in a limb-expression 1 (LIX1)-deficient cat-a large animal model of lower motor neuron disease-using three different delivery routes to the central nervous system. AAV.vegf vectors were injected into the motor cortex via intracerebral administration, into the cisterna magna, or intravenously in young adult cats. Intracerebral injections resulted in detectable transgene DNA and transcripts throughout the spinal cord, confirming anterograde transport of AAV via the corticospinal pathway. However, such strategy led to low levels of VEGF expression in the spinal cord. Similar AAV doses injected intravenously resulted also in poor spinal cord transduction. In contrast, intracisternal delivery of AAV exhibited long-term transduction and high levels of VEGF expression in the entire spinal cord, yet with no detectable therapeutic clinical benefit in LIX1-deficient animals. Altogether, we demonstrate (i) that intracisternal delivery is an effective AAV delivery route resulting in high transduction of the entire spinal cord, associated with little to no off-target gene expression, and (ii) that in a LIX1-deficient cat model, however, VEGF expressed at high levels in the spinal cord has no beneficial impact on the disease course.


Asunto(s)
Terapia Genética/métodos , Vectores Genéticos/metabolismo , Enfermedad de la Neurona Motora/terapia , Factor A de Crecimiento Endotelial Vascular/metabolismo , Administración Intravenosa , Análisis de Varianza , Animales , Western Blotting , Gatos , Cisterna Magna/metabolismo , Cartilla de ADN/genética , Dependovirus/genética , Ensayo de Inmunoadsorción Enzimática , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/metabolismo , Corteza Motora/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Médula Espinal/metabolismo , Transducción Genética , Transgenes/genética , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA