Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 560(7716): 76-79, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988081

RESUMEN

The past two million years of eastern African climate variability is currently poorly constrained, despite interest in understanding its assumed role in early human evolution1-4. Rare palaeoclimate records from northeastern Africa suggest progressively drier conditions2,5 or a stable hydroclimate6. By contrast, records from Lake Malawi in tropical southeastern Africa reveal a trend of a progressively wetter climate over the past 1.3 million years7,8. The climatic forcings that controlled these past hydrological changes are also a matter of debate. Some studies suggest a dominant local insolation forcing on hydrological changes9-11, whereas others infer a potential influence of sea surface temperature changes in the Indian Ocean8,12,13. Here we show that the hydroclimate in southeastern Africa (20-25° S) is controlled by interplay between low-latitude insolation forcing (precession and eccentricity) and changes in ice volume at high latitudes. Our results are based on a multiple-proxy reconstruction of hydrological changes in the Limpopo River catchment, combined with a reconstruction of sea surface temperature in the southwestern Indian Ocean for the past 2.14 million years. We find a long-term aridification in the Limpopo catchment between around 1 and 0.6 million years ago, opposite to the hydroclimatic evolution suggested by records from Lake Malawi. Our results, together with evidence of wetting at Lake Malawi, imply that the rainbelt contracted toward the Equator in response to increased ice volume at high latitudes. By reducing the extent of woodland or wetlands in terrestrial ecosystems, the observed changes in the hydroclimate of southeastern Africa-both in terms of its long-term state and marked precessional variability-could have had a role in the evolution of early hominins, particularly in the extinction of Paranthropus robustus.


Asunto(s)
Evolución Biológica , Clima , Hominidae , Lluvia , Alcanos/análisis , Alcanos/química , Animales , Extinción Biológica , Foraminíferos/química , Bosques , Historia Antigua , Hidrología , Océano Índico , Lagos , Malaui , Plantas/química , Ríos , Ciclo Hidrológico , Ceras/química , Humedales
2.
Nature ; 466(7303): 226-8, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20613839

RESUMEN

The Sahara Desert is the largest source of mineral dust in the world. Emissions of African dust increased sharply in the early 1970s (ref. 2), a change that has been attributed mainly to drought in the Sahara/Sahel region caused by changes in the global distribution of sea surface temperature. The human contribution to land degradation and dust mobilization in this region remains poorly understood, owing to the paucity of data that would allow the identification of long-term trends in desertification. Direct measurements of airborne African dust concentrations only became available in the mid-1960s from a station on Barbados and subsequently from satellite imagery since the late 1970s: they do not cover the onset of commercial agriculture in the Sahel region approximately 170 years ago. Here we construct a 3,200-year record of dust deposition off northwest Africa by investigating the chemistry and grain-size distribution of terrigenous sediments deposited at a marine site located directly under the West African dust plume. With the help of our dust record and a proxy record for West African precipitation we find that, on the century scale, dust deposition is related to precipitation in tropical West Africa until the seventeenth century. At the beginning of the nineteenth century, a sharp increase in dust deposition parallels the advent of commercial agriculture in the Sahel region. Our findings suggest that human-induced dust emissions from the Sahel region have contributed to the atmospheric dust load for about 200 years.


Asunto(s)
Agricultura/historia , Polvo/análisis , África Occidental , Arachis/crecimiento & desarrollo , Atmósfera/química , Barbados , Clima Desértico , Agua Dulce/química , Sedimentos Geológicos/química , Gossypium/crecimiento & desarrollo , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Historia Antigua , Tamaño de la Partícula , Lluvia , Agua de Mar , Clima Tropical , Viento
3.
Sci Data ; 6(1): 165, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477737

RESUMEN

Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.

4.
Nat Commun ; 8(1): 1372, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118318

RESUMEN

The rapidity and synchrony of the African Humid Period (AHP) termination at around 5.5 ka are debated, and it is unclear what caused a rapid hydroclimate response. Here we analysed the hydrogen isotopic composition of sedimentary leaf-waxes (δDwax) from the Gulf of Guinea, a proxy for regional precipitation in Cameroon and the central Sahel-Sahara. Our record indicates high precipitation during the AHP followed by a rapid decrease at 5.8-4.8 ka. The similarity with a δDwax record from northern East Africa suggests a large-scale atmospheric mechanism. We show that northern high- and mid-latitude cooling weakened the Tropical Easterly Jet and, through feedbacks, strengthened the African Easterly Jet. The associated decrease in precipitation triggered the AHP termination and combined with biogeophysical feedbacks to result in aridification. Our findings suggest that extratropical temperature changes, albeit smaller than during the glacial and deglacial, were important in triggering rapid African aridification during the Holocene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA