Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L662-L674, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37786934

RESUMEN

Early life over-nutrition, as experienced in maternal obesity, is a risk factor for developing cardiorespiratory and metabolic diseases. Here we investigated the effects of high-fat diet (HFD) consumption on the breathing pattern and sympathetic discharge to blood vessels in juvenile offspring from dams fed with HFD (O-HFD). Adult female Holtzman rats were given a standard diet (SD) or HFD from 6 wk before gestation to weaning. At weaning (P21), the male offspring from SD dams (O-SD) and O-HFD received SD until the experimental day (P28-P45). Nerve recordings performed in decerebrated in situ preparations demonstrated that O-HFD animals presented abdominal expiratory hyperactivity under resting conditions and higher vasoconstrictor sympathetic activity levels. The latter was associated with blunted respiratory-related oscillations in sympathetic activity, especially in control animals. When exposed to elevated hypercapnia or hypoxia levels, the O-HFD animals mounted similar ventilatory and respiratory motor responses as the control animals. Hypercapnia and hypoxia exposure also increased sympathetic activity in both groups but did not reinstate the respiratory-sympathetic coupling in the O-HFD rats. In freely behaving conditions, O-HFD animals exhibited higher resting pulmonary ventilation and larger variability of arterial pressure levels than the O-SD animals due to augmented sympathetic modulation of blood vessel diameter. Maternal obesity modified the functioning of cardiorespiratory systems in offspring at a young age, inducing active expiration and sympathetic overactivity under resting conditions. These observations represent new evidence about pregnancy-related complications that lead to the development of respiratory distress and hypertension in children of obese mothers.NEW & NOTEWORTHY Maternal obesity is a risk factor for developing cardiorespiratory and metabolic diseases. This study highlights the changes on the breathing pattern and sympathetic discharge to blood vessels in juvenile offspring from dams fed with HFD. Maternal obesity modified the functioning of cardiorespiratory systems in offspring, inducing active expiration and sympathetic overactivity. These observations represent new evidence about pregnancy-related complications that lead to the development of respiratory distress and hypertension in children of obese mothers.


Asunto(s)
Hipertensión , Enfermedades Metabólicas , Obesidad Materna , Efectos Tardíos de la Exposición Prenatal , Síndrome de Dificultad Respiratoria , Humanos , Niño , Ratas , Animales , Masculino , Femenino , Embarazo , Dieta Alta en Grasa/efectos adversos , Obesidad Materna/complicaciones , Hipercapnia , Respiración , Obesidad , Ratas Sprague-Dawley , Hipoxia/complicaciones , Enfermedades Metabólicas/complicaciones , Síndrome de Dificultad Respiratoria/complicaciones , Efectos Tardíos de la Exposición Prenatal/metabolismo
2.
Brain Behav Immun ; 102: 370-386, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339628

RESUMEN

Recent evidence has suggested that the carotid bodies might act as immunological sensors, detecting pro-inflammatory mediators and signalling to the central nervous system, which, in turn, orchestrates autonomic responses. Here, we confirmed that the TNF-α receptor type I is expressed in the carotid bodies of rats. The systemic administration of TNF-α increased carotid body afferent discharge and activated glutamatergic neurons in the nucleus tractus solitarius (NTS) that project to the rostral ventrolateral medulla (RVLM), where many pre-sympathetic neurons reside. The activation of these neurons was accompanied by an increase in splanchnic sympathetic nerve activity. Carotid body ablation blunted the TNF-α-induced activation of RVLM-projecting NTS neurons and the increase in splanchnic sympathetic nerve activity. Finally, plasma and spleen levels of cytokines after TNF-α administration were higher in rats subjected to either carotid body ablation or splanchnic sympathetic denervation. Collectively, our findings indicate that the carotid body detects circulating TNF-α to activate a counteracting sympathetic anti-inflammatory mechanism.


Asunto(s)
Cuerpo Carotídeo , Animales , Antiinflamatorios , Bulbo Raquídeo/fisiología , Ratas , Ratas Sprague-Dawley , Reflejo , Núcleo Solitario/fisiología , Sistema Nervioso Simpático/fisiología , Factor de Necrosis Tumoral alfa
3.
Exp Physiol ; 106(5): 1263-1271, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33651463

RESUMEN

NEW FINDINGS: What is the central question of this study? This study presents a new model for studying the rapid onset of severe, acute hyperkalaemia in rats with intact kidney function by administering an intragastric KCl load. What is the main finding and its importance? This new model of intragastric KCl load produces a reliable and reproducible model for studying the rapid onset of severe, acute hyperkalaemia in rats with intact kidney function. We report unprecedented rapid changes (30 min) in ECG, blood pressure and various arterial blood analyses with this new model, providing a solid foundation for future experiments in this field. ABSTRACT: A variety of animal models have been proposed to study hyperkalaemia, but most of them have meaningful limitations when the goal is to study the effect of potassium overload on healthy kidneys. In this study, we aimed to introduce a new approach for induction of hyperkalaemia in a reliable and reproducible animal model. We used intragastric administration of potassium chloride [KCl 2.3 M, 10 ml/(kg body weight)] to male Holtzman rats (300-350 g) to induce hyperkalaemia. The results showed that this potassium load can temporarily overwhelm the renal and extrarenal handling of this ion, causing an acute and severe hyperkalaemia that can be useful to study the effect of potassium imbalance in a variety of scenarios. Severe hyperkalaemia (>8 meqiv/l) and very profound ECG alterations, characterized by lengthening waves and intervals, were seen as early as 30 min after intragastric administration of KCl in rats. In addition, a transient increase in arterial blood pressure and time-dependent bradycardia were also seen after the KCl administration. No metabolic acidosis was present in the animals, and the potassium ion did not increase proportionally to chloride ion in the blood, leading to an increased anion gap. In conclusion, the results suggest that intragastric KCl loading is a reliable model to promote rapid and severe hyperkalaemia that can be used for further research on this topic.


Asunto(s)
Hiperpotasemia , Animales , Arritmias Cardíacas , Hiperpotasemia/etiología , Riñón , Masculino , Potasio , Cloruro de Potasio/farmacología , Ratas
4.
Neuroendocrinology ; 111(1-2): 70-86, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31955161

RESUMEN

BACKGROUND/AIMS: Furosemide is a loop diuretic widely used in clinical practice for the treatment of oedema and hypertension. The aim of this study was to determine physiological and molecular changes in the hypothalamic-neurohypophysial system as a consequence of furosemide-induced sodium depletion. METHODS: Male rats were sodium depleted by acute furosemide injection (10 and 30 mg/kg) followed by access to low sodium diet and distilled water for 24 h. The renal and behavioural consequences were evaluated, while blood and brains were collected to evaluate the neuroendocrine and gene expression responses. RESULTS: Furosemide treatment acutely increases urinary sodium and water excretion. After 24 h, water and food intake were reduced, while plasma angiotensin II and corticosterone were increased. After hypertonic saline presentation, sodium-depleted rats showed higher preference for salt. Interrogation using RNA sequencing revealed the expression of 94 genes significantly altered in the hypothalamic paraventricular nucleus (PVN) of sodium-depleted rats (31 upregulated and 63 downregulated). Out of 9 genes chosen, 5 were validated by quantitative PCR in the PVN (upregulated: Ephx2, Ndnf and Vwf; downregulated: Caprin2 and Opn3). The same genes were also assessed in the supraoptic nucleus (SON, upregulated: Tnnt1, Mis18a, Nr1d1 and Dbp; downregulated: Caprin2 and Opn3). As a result of these plastic transcriptome changes, vasopressin expression was decreased in PVN and SON, whilst vasopressin and oxytocin levels were reduced in plasma. CONCLUSIONS: We thus have identified novel genes that might regulate vasopressin gene expression in the hypothalamus controlling the magnocellular neurons secretory response to body sodium depletion and consequently hypotonic stress.


Asunto(s)
Diuréticos/farmacología , Furosemida/farmacología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sodio/metabolismo , Transcriptoma/efectos de los fármacos , Equilibrio Hidroelectrolítico/efectos de los fármacos , Animales , Sistema Hipotálamo-Hipofisario/fisiología , Masculino , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Ratas Wistar , Factores de Tiempo , Transcriptoma/fisiología , Vasopresinas/metabolismo , Equilibrio Hidroelectrolítico/fisiología
5.
Pulm Pharmacol Ther ; 70: 102075, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34428598

RESUMEN

Chronic Obstructive Pulmonary Disease - COPD is characterized by the destruction of alveolar walls associated to a chronic inflammatory response of the airways. There is no clinical therapy for COPD. In this context, cell-based therapies represent a promising therapeutic approach for chronic lung disease. The goal of this work was to evaluate the effect of simvastatin on cell-based therapy in a mice emphysema model. Female FVB mice received intranasal instillation of elastase (three consecutive doses of 50 µL) in order to promote pulmonary emphysema. After 21 days of the first instillation, the animals were treated with Adipose-Derived Mesenchymal Stromal Cells (AD-MSC, 2.6 × 106) via retro-orbital infusion associated or not with simvastatin administrated daily via oral gavage (15 mg/kg/15d). Before and after these treatments, the histological and morphometrical analyses of the lung tissue, as so as lung function (whole body plethysmography) were evaluated. PAI-1 gene expression, an upregulated factor by ischemia that indicate a low survival of transplanted MSC, was also evaluated. The result regarding morphological and functional aspects of both lungs, presented no significant difference among the groups (AD-MSC or AD-MSC + Simvastatin). However, significant anatomical difference was observed in the right lung of the both groups of mice. The results shown a higher deposition of cells in the right lung, with might to be explained by anatomical differences (slightly higher right bronchi). Decreased levels of PAI-1 were observed in the simvastatin treated groups. The pulmonary ventilation was similar between the groups with only a tendency to a lower in the elastase treated animals due to a low respiratory frequency. In conclusion, the results suggest that both AD-MSC and simvastatin treatments could promote an improvement of morphological recovery of pulmonary emphysema, that it was more pronounced in the right lung.


Asunto(s)
Enfisema , Células Madre Mesenquimatosas , Enfisema Pulmonar , Animales , Modelos Animales de Enfermedad , Femenino , Pulmón , Ratones , Ratones Endogámicos C57BL , Elastasa Pancreática , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/tratamiento farmacológico , Simvastatina/farmacología
6.
Pflugers Arch ; 472(1): 49-60, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31884528

RESUMEN

The nucleus of the solitary tract (NTS) is an important area of the brainstem that receives and integrates afferent cardiorespiratory sensorial information, including those from arterial chemoreceptors and baroreceptors. It was described that acetylcholine (ACh) in the commissural subnucleus of the NTS (cNTS) promotes an increase in the phrenic nerve activity (PNA) and antagonism of nicotinic receptors in the same region reduces the magnitude of tachypneic response to peripheral chemoreceptor stimulation, suggesting a functional role of cholinergic transmission within the cNTS in the chemosensory control of respiratory activity. In the present study, we investigated whether cholinergic receptor antagonism in the cNTS modifies the sympathetic and respiratory reflex responses to hypercapnia. Using an arterially perfused in situ preparation of juvenile male Holtzman rats, we found that the nicotinic antagonist (mecamylamine, 5 mM), but not the muscarinic antagonist (atropine, 5 mM), into the cNTS attenuated the hypercapnia-induced increase of hypoglossal activity. Furthermore, mecamylamine in the cNTS potentiated the generation of late-expiratory (late-E) activity in abdominal nerve induced by hypercapnia. None of the cholinergic antagonists microinjected in the cNTS changed either the sympathetic or the phrenic nerve responses to hypercapnia. Our data provide evidence for the role of cholinergic transmission in the cNTS, acting on nicotinic receptors, modulating the hypoglossal and abdominal responses to hypercapnia.


Asunto(s)
Neuronas Colinérgicas/fisiología , Hipercapnia/metabolismo , Respiración , Transmisión Sináptica , Comisuras Telencefálicas/fisiología , Animales , Atropina/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Hipercapnia/fisiopatología , Nervio Hipogloso/fisiología , Masculino , Mecamilamina/farmacología , Agonistas Muscarínicos/farmacología , Antagonistas Nicotínicos/farmacología , Nervio Frénico/fisiología , Ratas , Receptores Colinérgicos/metabolismo , Reflejo , Núcleo Solitario/fisiología , Núcleo Solitario/fisiopatología , Comisuras Telencefálicas/fisiopatología
7.
Am J Physiol Regul Integr Comp Physiol ; 318(4): R730-R742, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32022595

RESUMEN

The two kidney-one clip (2K1C) renovascular hypertension depends on the renin-angiotensin system and sympathetic overactivity. The maintenance of 2K1C hypertension also depends on inputs from the carotid bodies (CB), which when activated stimulate the respiratory activity. In the present study, we investigated the importance of CB afferent activity for the ventilatory responses in 2K1C hypertensive rats and for phrenic and hypoglossal activities in in situ preparations of normotensive rats treated with angiotensin II. Silver clips were implanted around the left renal artery of male Holtzman rats (150 g) to induce renovascular hypertension. Six weeks after clipping, hypertensive 2K1C rats showed, in conscious state, elevated resting tidal volume and minute ventilation compared with the normotensive group. 2K1C rats also presented arterial alkalosis, urinary acidification, and amplified hypoxic ventilatory response. Carotid body removal (CBR), 2 wk before the experiments (4th week after clipping), significantly reduced arterial pressure and pulmonary ventilation in 2K1C rats but not in normotensive rats. Intra-arterial administration of angiotensin II in the in situ preparation of normotensive rats increased phrenic and hypoglossal activities, responses that were also reduced after CBR. Results show that renovascular hypertensive rats exhibit increased resting ventilation that depends on CB inputs. Similarly, angiotensin II increases phrenic and hypoglossal activities in in situ preparations of normotensive rats, responses that also depend on CB inputs. Results suggest that mechanisms that depend on CB inputs in renovascular hypertensive rats or during angiotensin II administration in normotensive animals increase respiratory drive.


Asunto(s)
Cuerpo Carotídeo/fisiología , Hipertensión Renovascular/fisiopatología , Ratas Sprague-Dawley , Angiotensina II/administración & dosificación , Angiotensina II/farmacología , Animales , Nervio Hipogloso/fisiología , Masculino , Fenilefrina/administración & dosificación , Fenilefrina/farmacología , Nervio Frénico/fisiología , Ratas , Sistema Nervioso Simpático , Simpatomiméticos/farmacología
9.
Exp Physiol ; 104(1): 15-27, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30370945

RESUMEN

NEW FINDINGS: What is the central question of this study? Does carotid body input contribute to the hyperosmotic responses? What is the main finding and its importance? The response to NaCl overload is sympathorespiratory excitation. Eliminating the carotid body input reduced sympathoexcitation but did not affect the increase in phrenic burst frequency, whereas eliminating the hypothalamus prevented the tachypnoea and sympathoexcitation. We conclude that the carotid body inputs are essential for the full expression of the sympathetic activity during acute NaCl overload, whereas the tachypnoea depends on hypothalamic mechanisms. ABSTRACT: Acute salt excess activates central osmoreceptors, which trigger an increase in sympathetic and respiratory activity. The carotid bodies also respond to hyperosmolality of the extracellular compartment, but their contribution to the sympathoexcitatory and ventilatory responses to NaCl overload remains unknown. To evaluate their contribution to acute NaCl overload, we recorded thoracic sympathetic (tSNA), phrenic (PNA) and carotid sinus nerve activities in decorticate in situ preparations of male Holtzman rats (60-100 g) while delivering intra-arterial infusions of hyperosmotic NaCl (0.17, 0.3, 0.7, 1.5 and 2.0 mol l-1 ; 200 µl infusion over 25-30 s, with a 10 min time interval between solutions) or mannitol (0.3, 0.5, 1.0, 2.7 and 3.8 mol l-1 ) progressively. The cumulative infusions of hyperosmotic NaCl increased the perfusate osmolality to 341 ± 5 mosmol (kg water)-1 and elicited an immediate increase in PNA and tSNA (n = 6, P < 0.05) in sham-denervated rats. Carotid body removal attenuated sympathoexcitation (n = 5, P < 0.05) but did not affect the tachypnoeic response. A precollicular transection disconnecting the hypothalamus abolished the sympathoexcitatory and tachypnoeic responses to NaCl overload (n = 6, P < 0.05). Equi-osmolar infusions of mannitol did not alter the PNA and tSNA in sham-denervated rats (n = 5). Sodium chloride infusions increased carotid sinus nerve activity (n = 10, P < 0.05), whereas mannitol produced negligible changes (n = 5). The results indicate that carotid bodies are activated by acute NaCl overload, but not by mannitol. We conclude that the carotid bodies contribute to the increased sympathetic activity during acute NaCl overload, whereas the ventilatory response is mainly mediated by hypothalamic mechanisms.


Asunto(s)
Cuerpo Carotídeo/efectos de los fármacos , Cuerpo Carotídeo/metabolismo , Cloruro de Sodio/toxicidad , Sistema Nervioso Simpático/efectos de los fármacos , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Solución Salina Hipertónica/farmacología , Cloruro de Sodio/metabolismo , Cloruro de Sodio Dietético/farmacología
10.
Exp Physiol ; 104(9): 1371-1383, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31328309

RESUMEN

NEW FINDINGS: What is the central question of this study? Adrenomedullin in the rostral ventrolateral medulla (RVLM) increases sympathetic activity; given that adrenomedullin is released during hypoxia, what are the effects of its agonism and antagonism in the RVLM after chronic intermitent hypoxia (CIH) exposure? What is the main finding and its importance? CIH exposure sensitizes adrenomedullin-dependent mechanisms in the RVLM, supporting its role as a sympathoexcitatory neuromodulator. A novel mechanism was identified for the generation of sympathetic overdrive and hypertension associated with hypoxia, providing potential guidance on new therapeutic approaches for controlling sympathetic hyperactivity in diseases such as sleep apnoea and neurogenic hypertension. ABSTRACT: Adrenomedullin in the rostral ventrolateral medulla (RVLM) has been shown to increase sympathetic activity whereas the antagonism of its receptors inhibited this autonomic activity lowering blood pressure in conditions of hypertension. Given that hypoxia is a stimulant for releasing adrenomedullin, we hypothesized that the presence of this peptide in the RVLM associated with chronic intermittent hypoxia (CIH) would cause sympathetic overdrive. Juvenile male rats (50-55 g) submitted to CIH (6% oxygen every 9 min, 8 h day-1 for 10 days) were studied in an arterially perfused in situ preparation where sympathetic activity was recorded. In control rats (n = 6), exogenously applied adrenomedullin in the RVLM raised baseline sympathetic activity when combined with episodic activation of peripheral chemoreceptors (KCN 0.05%, 5 times every 5 min). This sympathoexcitatory response was markedly amplified in rats previously exposed to CIH (n = 6). The antagonism of adrenomedullin receptors in the RVLM caused a significant reduction in sympathetic activity in the CIH group (n = 7), but not in controls (n = 8). The transient reflex-evoked sympathoexcitatory response to peripheral chemoreceptor stimulation was not affected by either adrenomedullin or adrenomedullin receptor antagonism in the RVLM of control and CIH rats. Our findings indicate that CIH sensitizes the sympathoexcitatory networks within the RVLM to adrenomedullin, supporting its role as an excitatory neuromodulator when intermittent hypoxia is present. These data reveal novel state-dependent mechanistic insights into the generation of sympathetic overdrive and provide potential guidance on possible unique approaches for controlling sympathetic discharge in diseases such as sleep apnoea and neurogenic hypertension.


Asunto(s)
Adrenomedulina/farmacología , Hipoxia/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Sistema Nervioso Simpático/efectos de los fármacos , Vasoconstrictores/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Masculino , Bulbo Raquídeo/efectos de los fármacos , Bulbo Raquídeo/fisiopatología , Ratas , Síndromes de la Apnea del Sueño/fisiopatología
11.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L891-L909, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30188747

RESUMEN

The retrotrapezoid nucleus (RTN) contains chemosensitive cells that distribute CO2-dependent excitatory drive to the respiratory network. This drive facilitates the function of the respiratory central pattern generator (rCPG) and increases sympathetic activity. It is also evidenced that during hypercapnia, the late-expiratory (late-E) oscillator in the parafacial respiratory group (pFRG) is activated and determines the emergence of active expiration. However, it remains unclear the microcircuitry responsible for the distribution of the excitatory signals to the pFRG and the rCPG in conditions of high CO2. Herein, we hypothesized that excitatory inputs from chemosensitive neurons in the RTN are necessary for the activation of late-E neurons in the pFRG. Using the decerebrated in situ rat preparation, we found that lesions of neurokinin-1 receptor-expressing neurons in the RTN region with substance P-saporin conjugate suppressed the late-E activity in abdominal nerves (AbNs) and sympathetic nerves (SNs) and attenuated the increase in phrenic nerve (PN) activity induced by hypercapnia. On the other hand, kynurenic acid (100 mM) injections in the pFRG eliminated the late-E activity in AbN and thoracic SN but did not modify PN response during hypercapnia. Iontophoretic injections of retrograde tracer into the pFRG of adult rats revealed labeled phox2b-expressing neurons within the RTN. Our findings are supported by mathematical modeling of chemosensitive and late-E populations within the RTN and pFRG regions as two separate but interacting populations in a way that the activation of the pFRG late-E neurons during hypercapnia require glutamatergic inputs from the RTN neurons that intrinsically detect changes in CO2/pH.


Asunto(s)
Núcleo Celular/fisiología , Espiración/fisiología , Neuronas/fisiología , Sistema Nervioso Simpático/fisiopatología , Animales , Dióxido de Carbono/metabolismo , Núcleo Celular/metabolismo , Concentración de Iones de Hidrógeno , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Masculino , Neuronas/metabolismo , Nervio Frénico/metabolismo , Nervio Frénico/fisiopatología , Ratas , Ratas Wistar , Receptores de Neuroquinina-1/metabolismo , Sistema Nervioso Simpático/metabolismo
12.
Am J Physiol Heart Circ Physiol ; 314(4): H716-H723, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351468

RESUMEN

Previous studies have indicated that central GABAergic mechanisms are involved in the heart rate (HR) responses at the onset of exercise. On the basis of previous research that showed similar increases in HR during passive and active cycling, we reasoned that the GABAergic mechanisms involved in the HR responses at the exercise onset are primarily mediated by muscle mechanoreceptor afferents. Therefore, in this study, we sought to determine whether central GABA mechanisms are involved in the muscle mechanoreflex-mediated HR responses at the onset of exercise in humans. Twenty-eight healthy subjects (14 men and 14 women) aged between 18 and 35 yr randomly performed three bouts of 5-s passive and active cycling under placebo and after oral administration of diazepam (10 mg), a benzodiazepine that produces an enhancement in GABAA activity. Beat-to-beat HR (electrocardiography) and arterial blood pressure (finger photopletysmography) were continuously measured. Electromyography of the vastus lateralis was obtained to confirm no electrical activity during passive trials. HR increased from rest under placebo and further increased after administration of diazepam in both passive (change: 12 ± 1 vs. 17 ± 1 beats/min, P < 0.01) and active (change: 14 ± 1 vs. 18 ± 1 beats/min, P < 0.01) cycling. Arterial blood pressure increased from rest similarly during all conditions ( P > 0.05). Importantly, no sex-related differences were found in any variables during experiments. These findings demonstrate, for the first time, that the GABAergic mechanisms significantly contribute to the muscle mechanoreflex-mediated HR responses at the onset of exercise in humans. NEW & NOTEWORTHY We found that passive and voluntary cycling evokes similar increases in heart rate and that these responses were enhanced after diazepam administration, a benzodiazepine that enhances GABAA activity. These findings suggest that the GABAergic system may contribute to the muscle mechanoreflex-mediated vagal withdrawal at the onset of exercise in humans.


Asunto(s)
Encéfalo/efectos de los fármacos , Diazepam/administración & dosificación , Ejercicio Físico/fisiología , Agonistas de Receptores de GABA-A/administración & dosificación , Neuronas GABAérgicas/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Corazón/inervación , Husos Musculares/metabolismo , Músculo Cuádriceps/inervación , Reflejo/efectos de los fármacos , Adolescente , Adulto , Presión Arterial/efectos de los fármacos , Ciclismo , Encéfalo/metabolismo , Estudios Cruzados , Método Doble Ciego , Femenino , Neuronas GABAérgicas/metabolismo , Humanos , Masculino , Músculo Cuádriceps/metabolismo , Distribución Aleatoria , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/metabolismo , Factores de Tiempo , Adulto Joven , Ácido gamma-Aminobutírico/metabolismo
13.
Exp Physiol ; 101(1): 67-80, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26537847

RESUMEN

Our knowledge of mechanisms responsible for both the development and the maintenance of hypertension remains incomplete in the Goldblatt (two-kidney, one-clip; 2K1C) model. We tested the hypothesis that elevated sympathetic nerve activity (SNA) occurs before the onset of hypertension in 2K1C rats, considering the time course of the increase in SNA in relationship to the onset of the hypertension. We used a decorticated in situ working heart-brainstem preparation of three groups of male Wistar rats, namely sham-operated animals (SHAM, n = 7) and animals 3 weeks post-2K1C, of which some were hypertensive (2K1C-H, n = 6) and others normotensive (2K1C-N, n = 9), as determined in vivo a priori. Perfusion pressure was higher in both 2K1C groups (2K1C-H, 76 ± 1 mmHg; 2K1C-N, 74 ± 3 mmHg; versus SHAM, 60 ± 2 mmHg, P < 0.05). The SNA was significantly elevated in both 2K1C groups (2K1C-H, 47.7 ± 6.1 µV; 2K1C-N, 32.8 ± 2.8 µV; versus SHAM, 20.5 ± 2.5 µV, P < 0.05) owing to its increased respiratory modulation; the chemoreflex was augmented and baroreflex depressed. Precollicular transection reduced SNA in all groups (2K1C-H, -32.5 ± 7.5%; 2K1C-NH, -48 ± 6.9%; versus SHAM, -13.2 ± 1%, P < 0.05). Subsequent medullary spinal cord transection abolished SNA in both SHAM and 2K1C-N groups, but decreased it by only 57 ± 5.5% in 2K1C-H preparations. Thus, SNA is raised before the onset of hypertension, by the third week after renal artery clipping, and this originates, in part, from its enhanced respiratory modulation. Spinal circuits contribute to the elevation of SNA in the 2K1C model, but only after hypertension has developed.


Asunto(s)
Hipertensión Renovascular/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Animales , Barorreflejo , Presión Sanguínea , Tronco Encefálico/fisiopatología , Células Quimiorreceptoras , Corazón/fisiopatología , Frecuencia Cardíaca , Masculino , Red Nerviosa/fisiopatología , Ratas , Ratas Wistar , Mecánica Respiratoria , Simpatectomía
14.
J Neurosci ; 34(11): 3810-20, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24623760

RESUMEN

Arginine vasopressin (AVP) is a neurohypophysial hormone regulating hydromineral homeostasis. Here we show that the mRNA encoding cAMP responsive element-binding protein-3 like-1 (CREB3L1), a transcription factor of the CREB/activating transcription factor (ATF) family, increases in expression in parallel with AVP expression in supraoptic nuclei (SONs) and paraventicular nuclei (PVNs) of dehydrated (DH) and salt-loaded (SL) rats, compared with euhydrated (EH) controls. In EH animals, CREB3L1 protein is expressed in glial cells, but only at a low level in SON and PVN neurons, whereas robust upregulation in AVP neurons accompanied DH and SL rats. Concomitantly, CREB3L1 is activated by cleavage, with the N-terminal domain translocating from the Golgi, via the cytosol, to the nucleus. We also show that CREB3L1 mRNA levels correlate with AVP transcription level in SONs and PVNs following sodium depletion, and as a consequence of diurnal rhythm in the suprachiasmatic nucleus. We tested the hypothesis that CREB3L1 activates AVP gene transcription. Both full-length and constitutively active forms of CREB3L1 (CREB3L1CA) induce the expression of rat AVP promoter-luciferase reporter constructs, whereas a dominant-negative mutant reduces expression. Rat AVP promoter deletion constructs revealed that CRE-like and G-box sequences in the region between -170 and -120 bp are important for CREB3L1 actions. Direct binding of CREB3L1 to the AVP promoter was shown by chromatin immunoprecipitation both in vitro and in the SON itself. Injection of a lentiviral vector expressing CREB3L1CA into rat SONs and PVNs resulted in increased AVP biosynthesis. We thus identify CREB3L1 as a regulator of AVP transcription in the rat hypothalamus.


Asunto(s)
Arginina Vasopresina/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hipotálamo Anterior/fisiología , Núcleo Hipotalámico Paraventricular/fisiología , Animales , Regulación de la Expresión Génica/fisiología , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Masculino , Quiasma Óptico/fisiología , Técnicas de Cultivo de Órganos , Presión Osmótica/fisiología , Regiones Promotoras Genéticas/fisiología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Activación Transcripcional/fisiología
15.
J Nutr ; 145(5): 907-14, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25934662

RESUMEN

BACKGROUND: Maternal protein restriction in rats increases the risk of adult offspring arterial hypertension through unknown mechanisms. OBJECTIVES: The aims of the study were to evaluate the effects of a low-protein (LP) diet during pregnancy and lactation on baseline sympathetic and respiratory activities and peripheral chemoreflex sensitivity in the rat offspring. METHODS: Wistar rat dams were fed a control [normal-protein (NP); 17% protein] or an LP (8% protein) diet during pregnancy and lactation, and their male offspring were studied at 30 d of age. Direct measurements of baseline arterial blood pressure (ABP), heart rate (HR), and respiratory frequency (Rf) as well as peripheral chemoreflex activation (potassium cyanide: 0.04%) were recorded in pups while they were awake. In addition, recordings of the phrenic nerve (PN) and thoracic sympathetic nerve (tSN) activities were obtained from the in situ preparations. Hypoxia-inducible factor 1α (HIF-1α) expression was also evaluated in carotid bifurcation through a Western blotting assay. RESULTS: At 30 d of age, unanesthetized LP rats exhibited enhanced resting Rf (P = 0.001) and similar ABP and HR compared with the NP rats. Despite their similar baseline ABP values, LP rats exhibited augmented low-frequency variability (∼91%; P = 0.01). In addition, the unanesthetized LP rats showed enhanced pressor (P = 0.01) and tachypnoeic (P = 0.03) responses to peripheral chemoreflex activation. The LP rats displayed elevated baseline tSN activity (∼86%; P = 0.02) and PN burst frequency (45%; P = 0.01) and amplitude (53%; P = 0.001) as well as augmented sympathetic (P = 0.01) and phrenic (P = 0.04) excitatory responses to peripheral chemoreflex activation compared with the NP group. Furthermore, LP rats showed an increase of ∼100% in HIF-1α protein density in carotid bifurcation compared with NP rats. CONCLUSION: Sympathetic-respiratory overactivity and amplified peripheral chemoreceptor responses, potentially through HIF-1α-dependent mechanisms, precede the onset of hypertension in juvenile rats exposed to protein undernutrition during gestation and lactation.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Dieta con Restricción de Proteínas/efectos adversos , Fenómenos Fisiologicos Nutricionales Maternos , Sistema Nervioso Periférico/fisiopatología , Prehipertensión/fisiopatología , Sistema Respiratorio/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Animales , Peso al Nacer , Arteria Carótida Común/metabolismo , Arteria Carótida Común/patología , Arteria Carótida Común/fisiopatología , Células Quimiorreceptoras/patología , Femenino , Desarrollo Fetal , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lactancia , Masculino , Sistema Nervioso Periférico/patología , Nervio Frénico/patología , Nervio Frénico/fisiopatología , Embarazo , Prehipertensión/etiología , Prehipertensión/metabolismo , Prehipertensión/patología , Ratas Wistar , Sistema Respiratorio/patología , Sistema Nervioso Simpático/patología , Nervios Torácicos/patología , Nervios Torácicos/fisiopatología
16.
Exp Physiol ; 99(3): 571-85, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24363384

RESUMEN

Chemoreception is the classic mechanism by which the brain regulates breathing in response to changes in tissue CO2/H(+). A brainstem region called the retrotrapezoid nucleus (RTN) contains a population of Phox2b-expressing glutamatergic neurons that appear to function as important chemoreceptors. In the present study, we ask whether the destruction of a type of pH-sensitive interneuron that expresses the transcription factor Phox2b and is non-catecholaminergic (Phox2b(+)TH(-)) could affect breathing in conscious adult rats. The injection of substance P (1 nmol in a volume of 50 nl) into the RTN increased respiratory frequency, tidal volume, minute ventilation and mean arterial pressure. Bilateral injections of the toxin substance P conjugated with saporin (SSP-SAP) into the RTN destroyed Phox2b(+)TH(-) neurons but spared facial motoneurons, catecholaminergic and serotonergic neurons and the ventral respiratory column caudal to the facial motor nucleus. Bilateral inhibition of RTN neurons with SSP-SAP (0.6 ng in 30 nl) reduced resting ventilation and the increase in ventilation produced by hypercapnia (7% CO2) in conscious rats with or without peripheral chemoreceptors. In anaesthetized rats with bilateral lesions of around 90% of the Phox2b(+)TH(-) neurons, acute activation of the Bötzinger complex, the pre-Bötzinger complex or the rostral ventral respiratory group with NMDA (5 pmol in 50 nl) elicited normal cardiorespiratory output. In conclusion, the destruction of the Phox2b(+)TH(-) neurons is a plausible cause of the respiratory deficits observed after injection of SSP-SAP into the RTN. Our results also suggest that RTN neurons activate facilitatory mechanisms important to the control of breathing in resting or hypercapnic conditions in conscious adult rats.


Asunto(s)
Sistema Nervioso Central/fisiología , Proteínas de Homeodominio/fisiología , Neuronas/fisiología , Sistema Nervioso Periférico/fisiología , Respiración , Células Receptoras Sensoriales/fisiología , Factores de Transcripción/fisiología , Anestesia , Animales , Cuerpo Carotídeo/fisiología , Desnervación , Densitometría , Masculino , Ratas , Ratas Wistar , Receptores de Neuroquinina-1/genética , Receptores de Neuroquinina-1/fisiología , Reflejo/fisiología , Centro Respiratorio/fisiología , Proteínas Inactivadoras de Ribosomas Tipo 1/farmacología , Saporinas , Sustancia P/farmacología
17.
Exp Physiol ; 99(5): 743-58, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24610833

RESUMEN

The contribution of cholinergic mechanisms of the nucleus of the solitary tract (NTS) to cardiorespiratory control is not completely clear. In the present study, we investigated the involvement of the cholinergic mechanisms in the intermediate NTS (iNTS) and commissural NTS (cNTS) on the control of sympathetic (SNA) and phrenic nerve activity (PNA). Decorticated, arterially perfused in situ preparations of male juvenile rats (60-100 g) were used. Acetylcholine (10 mm, 60 nl) injected into the iNTS reduced SNA (-54 ± 4%, versus vehicle -5 ± 3%; P < 0.001) and PNA (-30 ± 4%, versus vehicle -5 ± 6%; P < 0.001), whereas injections of ACh into the cNTS increased PNA (30 ± 6%, versus vehicle 5 ± 3%; P < 0.001), without changing SNA. Pretreatment with mecamylamine (nicotinic antagonist; 5 mm) abolished all the effects of ACh injected into the iNTS or the cNTS, whereas atropine (muscarinic antagonist; 5 mm) reduced only the effects of ACh injected into the cNTS. Mecamylamine injected into the cNTS also reduced the tachypnoea in response to peripheral chemoreflex activation. The baroreflex was unaltered by injections of atropine or mecamylamine into the NTS. The results suggest that ACh and mainly nicotinic receptors in the NTS are involved in the modulation of SNA and PNA, with distinct functions between the iNTS and the cNTS. An involvement of the nicotinic receptors in the cNTS in the tachypnoea in response to peripheral chemoreflex activation is also suggested.


Asunto(s)
Acetilcolina/farmacología , Nervio Frénico/fisiología , Núcleo Solitario/efectos de los fármacos , Sistema Nervioso Simpático/fisiología , Animales , Atropina/farmacología , Barorreflejo/efectos de los fármacos , Barorreflejo/fisiología , Masculino , Mecamilamina/farmacología , Antagonistas Nicotínicos/farmacología , Ratas , Receptores Muscarínicos/efectos de los fármacos , Receptores Muscarínicos/fisiología , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/fisiología
18.
ScientificWorldJournal ; 2014: 496121, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25485300

RESUMEN

Changes in plasma osmolarity, through central and peripheral osmoreceptors, activate the median preoptic nucleus (MnPO) that modulates autonomic and neuroendocrine adjustments. The present study sought to determine the participation of MnPO in the cardiovascular recovery induced by hypertonic saline infusion (HSI) in rats submitted to hemorrhagic shock. The recordings of mean arterial pressure (MAP) and renal vascular conductance (RVC) were carried out on male Wistar rats (250-300 g). Hemorrhagic shock was induced by blood withdrawal over 20 min until the MAP values of approximately 60 mmHg were attained. The nanoinjection (100 nL) of GABAA agonist (Muscimol 4 mM; experimental group (EXP)) or isotonic saline (NaCl 150 mM; control (CONT)) into MnPO was performed 2 min prior to intravenous overload of sodium through HSI (3 M NaCl, 1.8 mL/kg, b.wt.). Hemorrhagic shock reduced the MAP in control (62 ± 1.1 mmHg) and EXP (61 ± 0.4 mmHg) equipotently. The inhibition of MnPO impaired MAP (CONT: 104 ± 4.2 versus EXP: 60 ± 6.2 mmHg) and RVC (CONT: 6.4 ± 11.4 versus EXP: -53.5 ± 10.0) recovery 10 min after HSI. The overall results in this study demonstrated, for the first time, that the MnPO plays an essential role in the HSI induced resuscitation during hypovolemic hemorrhagic shock.


Asunto(s)
Sistema Cardiovascular/fisiopatología , Área Preóptica/fisiopatología , Recuperación de la Función/efectos de los fármacos , Solución Salina Hipertónica/farmacología , Solución Salina Hipertónica/uso terapéutico , Choque Hemorrágico/tratamiento farmacológico , Choque Hemorrágico/fisiopatología , Animales , Presión Sanguínea/efectos de los fármacos , Sistema Cardiovascular/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Hematócrito , Hipovolemia/fisiopatología , Masculino , Concentración Osmolar , Área Preóptica/efectos de los fármacos , Ratas Wistar , Sodio/sangre
19.
Am J Physiol Regul Integr Comp Physiol ; 304(3): R252-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23193117

RESUMEN

Aldosterone acting on the brain stimulates sodium appetite and sympathetic activity by mechanisms that are still not completely clear. In the present study, we investigated the effects of chronic infusion of aldosterone and acute injection of the mineralocorticoid receptor (MR) antagonist RU 28318 into the fourth ventricle (4th V) on sodium appetite. Male Wistar rats (280-350 g) with a stainless-steel cannula in either the 4th V or lateral ventricle (LV) were used. Daily intake of 0.3 M NaCl increased to 46 ± 15 and 130 ± 6 ml/24 h after 6 days of infusion of 10 and 100 ng/h of aldosterone into the 4th V (intake with vehicle infusion: 2 ± 1 ml/24 h). Water intake fell slightly and not consistently, and food intake was not affected by aldosterone. Sodium appetite induced by diuretic (furosemide) combined with 24 h of a low-sodium diet fell from 12 ± 1.7 ml/2 h to 5.6 ± 0.8 ml/2 h after injection of the MR antagonist RU 28318 (100 ng/2 µl) into the 4th V. RU 28318 also reduced the intake of 0.3 M NaCl induced by 9 days of a low-sodium diet from 9.5 ± 2.6 ml/2 h to 1.2 ± 0.6 ml/2 h. Infusion of 100 or 500 ng/h of aldosterone into the LV did not affect daily intake of 0.3 M NaCl. The results are functional evidence that aldosterone acting on MR in the hindbrain activates a powerful mechanism involved in the control of sodium appetite.


Asunto(s)
Apetito/fisiología , Ingestión de Alimentos/fisiología , Antagonistas de Receptores de Mineralocorticoides/administración & dosificación , Mineralocorticoides/metabolismo , Rombencéfalo/fisiología , Sodio en la Dieta/metabolismo , Animales , Apetito/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Rombencéfalo/efectos de los fármacos
20.
Am J Physiol Regul Integr Comp Physiol ; 304(7): R531-42, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23364528

RESUMEN

The nucleus of the solitary tract (NTS) is the primary site of visceral afferents to the central nervous system. In the present study, we investigated the effects of lesions in the commissural portion of the NTS (commNTS) on the activity of vasopressinergic neurons in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei, plasma vasopressin, arterial pressure, water intake, and sodium excretion in rats with plasma hyperosmolality produced by intragastric 2 M NaCl (2 ml/rat). Male Holtzman rats with 15-20 days of sham or electrolytic lesion (1 mA; 10 s) of the commNTS were used. CommNTS lesions enhanced a 2 M NaCl intragastrically induced increase in the number of vasopressinergic neurons expressing c-Fos in the PVN (28 ± 1, vs. sham: 22 ± 2 c-Fos/AVP cells) and SON (26 ± 4, vs. sham: 11 ± 1 c-Fos/AVP cells), plasma vasopressin levels (21 ± 8, vs. sham: 6.6 ± 1.3 pg/ml), pressor responses (25 ± 7 mmHg, vs. sham: 7 ± 2 mmHg), water intake (17.5 ± 0.8, vs. sham: 11.2 ± 1.8 ml/2 h), and natriuresis (4.9 ± 0.8, vs. sham: 1.4 ± 0.3 meq/1 h). The pretreatment with vasopressin antagonist abolished the pressor response to intragastric 2 M NaCl in commNTS-lesioned rats (8 ± 2.4 mmHg at 10 min), suggesting that this response is dependent on vasopressin secretion. The results suggest that inhibitory mechanisms dependent on commNTS act to limit or counterbalance behavioral, hormonal, cardiovascular, and renal responses to an acute increase in plasma osmolality.


Asunto(s)
Presión Sanguínea/fisiología , Ingestión de Líquidos/fisiología , Riñón/fisiología , Núcleo Solitario/metabolismo , Desequilibrio Hidroelectrolítico/metabolismo , Animales , Masculino , Concentración Osmolar , Oxitocina , Núcleo Hipotalámico Paraventricular/citología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Núcleo Supraóptico/citología , Vasopresinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA