Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Physica D ; 413: 132674, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32834252

RESUMEN

Calibration of a SIR (Susceptibles-Infected-Recovered) model with official international data for the COVID-19 pandemics provides a good example of the difficulties inherent in the solution of inverse problems. Inverse modeling is set up in a framework of discrete inverse problems, which explicitly considers the role and the relevance of data. Together with a physical vision of the model, the present work addresses numerically the issue of parameters calibration in SIR models, it discusses the uncertainties in the data provided by international authorities, how they influence the reliability of calibrated model parameters and, ultimately, of model predictions.

2.
PLoS One ; 16(2): e0247854, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33630966

RESUMEN

The first case of Coronavirus Disease 2019 in Italy was detected on February the 20th in Lombardy region. Since that date, Lombardy has been the most affected Italian region by the epidemic, and its healthcare system underwent a severe overload during the outbreak. From a public health point of view, therefore, it is fundamental to provide healthcare services with tools that can reveal possible new health system stress periods with a certain time anticipation, which is the main aim of the present study. Moreover, the sequence of law decrees to face the epidemic and the large amount of news generated in the population feelings of anxiety and suspicion. Considering this whole complex context, it is easily understandable how people "overcrowded" social media with messages dealing with the pandemic, and emergency numbers were overwhelmed by the calls. Thus, in order to find potential predictors of possible new health system overloads, we analysed data both from Twitter and emergency services comparing them to the daily infected time series at a regional level. Particularly, we performed a wavelet analysis in the time-frequency plane, to finely discriminate over time the anticipation capability of the considered potential predictors. In addition, a cross-correlation analysis has been performed to find a synthetic indicator of the time delay between the predictor and the infected time series. Our results show that Twitter data are more related to social and political dynamics, while the emergency calls trends can be further evaluated as a powerful tool to potentially forecast new stress periods. Since we analysed aggregated regional data, and taking into account also the huge geographical heterogeneity of the epidemic spread, a future perspective would be to conduct the same analysis on a more local basis.


Asunto(s)
COVID-19/epidemiología , Monitoreo Epidemiológico , Medios de Comunicación Sociales , Servicios Médicos de Urgencia , Predicción , Humanos , Italia/epidemiología , Pandemias
3.
Sci Data ; 2: 150033, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26175910

RESUMEN

Geological structures are by nature inaccessible to direct observation. This can cause difficulties in applications where a spatially explicit representation of such structures is required, in particular when modelling fluid migration in geological formations. An increasing trend in recent years has been to use analogs to palliate this lack of knowledge, i.e., exploiting the spatial information from sites where the geology is accessible (outcrops, quarry sites) and transferring the observed properties to a study site deemed geologically similar. While this approach is appealing, it is difficult to put in place because of the lack of access to well-documented analog data. In this paper we present comprehensive analog data sets which characterize sedimentary structures from important groundwater hosting formations in Germany and Brazil. Multiple 2-D outcrop faces are described in terms of hydraulic, thermal and chemical properties and interpolated in 3-D using stochastic techniques. These unique data sets can be used by the wider community to implement analog approaches for characterizing reservoir and aquifer formations.


Asunto(s)
Sedimentos Geológicos , Agua Subterránea , Brasil , Alemania , Movimientos del Agua
4.
Ground Water ; 51(5): 692-705, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23252428

RESUMEN

Sand lenses at various spatial scales are recognized to add heterogeneity to glacial sediments. They have high hydraulic conductivities relative to the surrounding till matrix and may affect the advective transport of water and contaminants in clayey till settings. Sand lenses were investigated on till outcrops producing binary images of geological cross-sections capturing the size, shape and distribution of individual features. Sand lenses occur as elongated, anisotropic geobodies that vary in size and extent. Besides, sand lenses show strong non-stationary patterns on section images that hamper subsequent simulation. Transition probability (TP) and multiple-point statistics (MPS) were employed to simulate sand lens heterogeneity. We used one cross-section to parameterize the spatial correlation and a second, parallel section as a reference: it allowed testing the quality of the simulations as a function of the amount of conditioning data under realistic conditions. The performance of the simulations was evaluated on the faithful reproduction of the specific geological structure caused by sand lenses. Multiple-point statistics offer a better reproduction of sand lens geometry. However, two-dimensional training images acquired by outcrop mapping are of limited use to generate three-dimensional realizations with MPS. One can use a technique that consists in splitting the 3D domain into a set of slices in various directions that are sequentially simulated and reassembled into a 3D block. The identification of flow paths through a network of elongated sand lenses and the impact on the equivalent permeability in tills are essential to perform solute transport modeling in the low-permeability sediments.


Asunto(s)
Sedimentos Geológicos , Geología/métodos , Modelos Teóricos , Dióxido de Silicio , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA