Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mycorrhiza ; 29(3): 181-193, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30895370

RESUMEN

Mycorrhizal fungi are very diverse, including those that produce truffle-like fruiting bodies. Truffle-like fungi are hypogeous and sequestrate (produced below-ground, with an enclosed hymenophore) and rely on animal consumption, mainly by mammals, for spore dispersal. This dependence links mycophagous mammals to mycorrhizal diversity and, assuming truffle-like fungi are important components of mycorrhizal communities, to plant nutrient cycling and ecosystem health. These links are largely untested as currently little is known about mycorrhizal fungal community structure and its dependence on mycophagous mammals. We quantified the mycorrhizal fungal community in the north-east Australian woodland, including the portion interacting with ten species of mycophagous mammals. The study area is core habitat of an endangered fungal specialist marsupial, Bettongia tropica, and as such provides baseline data on mycorrhizal fungi-mammal interactions in an area with no known mammal declines. We examined the mycorrhizal fungi in root and soil samples via high-throughput sequencing and compared the observed taxa to those dispersed by mycophagous mammals at the same locations. We found that the dominant root-associating ectomycorrhizal fungal taxa (> 90% sequence abundance) included the truffle-like taxa Mesophellia, Hysterangium and Chondrogaster. These same taxa were also present in mycophagous mammalian diets, with Mesophellia often dominating. Altogether, 88% of truffle-like taxa from root samples were shared with the fungal specialist diet and 52% with diets from generalist mammals. Our data suggest that changes in mammal communities, particularly the loss of fungal specialists, could, over time, induce reductions to truffle-like fungal diversity, causing ectomycorrhizal fungal communities to shift with unknown impacts on plant and ecosystem health.


Asunto(s)
Conducta Alimentaria , Bosques , Mamíferos , Micobioma , Micorrizas/clasificación , Animales , Australia , Biodiversidad , Dieta/veterinaria , Ecosistema , Secuenciación de Nucleótidos de Alto Rendimiento , Marsupiales/fisiología , Microbiología del Suelo
2.
Mar Environ Res ; 191: 106160, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37678099

RESUMEN

BACKGROUND AND AIMS: Long distance dispersal (LDD) contributes to the replenishment and recovery of tropical seagrass habitats exposed to disturbance, such as cyclones and infrastructure development. However, our current knowledge regarding the physical attributes of seagrass fragments that influence LDD predominantly stems from temperate species and regions. The goal of this paper is to measure seagrass fragment density and viability in two tropical species, assessing various factors influencing their distribution. METHODS: We measured the density and viability of floating seagrass fragments for two tropical seagrass species (Zostera muelleri and Halodule uninervis) in two coastal seagrass meadows in the central Great Barrier Reef World Heritage Area, Australia. We assessed the effect of wind speed, wind direction, seagrass growing/senescent season, seagrass meadow density, meadow location and dugong foraging intensity on fragment density. We also measured seagrass fragment structure and fragment viability; i.e., potential to establish into a new plant. KEY RESULTS: We found that seagrass meadow density, season, wind direction and wind speed influenced total fragment density, while season and wind speed influenced the density of viable fragments. Dugong foraging intensity did not influence fragment density. Our results indicate that wave action from winds combined with high seagrass meadow density increases seagrass fragment creation, and that more fragments are produced during the growing than the senescent season. Seagrass fragments classified as viable for Z. muelleri and H. uninervis had significantly more shoots and leaves than non-viable fragments. We collected 0.63 (±0.08 SE) floating viable fragments 100 m-2 in the growing season, and 0.13 (±0.03 SE) viable fragments 100 m-2 in the senescent season. Over a third (38%) of all fragments collected were viable. CONCLUSION: There is likely to be a large number of viable seagrass fragments available for long distance dispersal. This study's outputs can inform dispersal and connectivity models that are used to direct seagrass ecosystem management and conservation strategies.


Asunto(s)
Alismatales , Dugong , Zosteraceae , Animales , Ecosistema , Australia
3.
Data Brief ; 12: 251-260, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28462363

RESUMEN

The data reported here support the manuscript Nuske et al. (2017) [1]. Searches were made for quantitative data on the occurrence of fungi within dietary studies of Australian mammal species. The original location reported in each study was used as the lowest grouping variable within the dataset. To standardise the data and compare dispersal events from populations of different mammal species that might overlap, data from locations were further pooled and averaged across sites if they occurred within 100 km of a random central point. Three locations in Australia contained data on several (>7) mycophagous mammals, all other locations had data on 1-3 mammal species. Within these three locations, the identity of the fungi species was compared between mammal species' diets. A list of all fungi species found in Australian mammalian diets is also provide along with the original reference and fungal synonym names.

4.
Evolution ; 54(3): 974-86, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10937270

RESUMEN

Mechanisms of population differentiation in highly vagile species such as seabirds are poorly understood. Previous studies of marbled murrelets (Brachyramphus marmoratus; Charadriiformes: Alcidae) found significant population genetic structure, but could not determine whether this structure is due to historical vicariance (e.g., due to Pleistocene glaciers), isolation by distance, drift or selection in peripheral populations, or nesting habitat selection. To discriminate among these possibilities, we analyzed sequence variation in nine nuclear introns from 120 marbled murrelets sampled from British Columbia to the western Aleutian Islands. Mismatch distributions indicated that murrelets underwent at least one population expansion during the Pleistocene and probably are not in genetic equilibrium. Maximum-likelihood analysis of allele frequencies suggested that murrelets from "mainland" sites (from the Alaskan Peninsula east) are genetically different from those in the Aleutians and that these two lineages diverged prior to the last glaciation. Analyses of molecular variance, as well as estimates of gene flow derived using coalescent theory, indicate that population genetic structure is best explained by peripheral isolation of murrelets in the Aleutian Islands, rather than by selection associated with different nesting habitats. No isolation-by-distance effects could be detected. Our results are consistent with a rapid expansion of murrelets from a single refugium during the early-mid Pleistocene, subsequent isolation and divergence in two or more refugia during the final Pleistocene glacial advance, and secondary contact following retreat of the ice sheets. Population genetic structure now appears to be maintained by distance effects combined with small populations and a highly fragmented habitat in the Aleutian Islands.


Asunto(s)
Aves/genética , Variación Genética , Alaska , Animales , Secuencia de Bases , Evolución Biológica , Intrones , Datos de Secuencia Molecular
5.
Mol Ecol ; 6(11): 1047-58, 1997 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9394463

RESUMEN

Combination of the targeted amplification of nuclear introns and the analysis of single-stranded conformational polymorphisms has the potential to provide an inexpensive, rapid, versatile and sensitive genetic assay for evolutionary studies and conservation. We are developing primers and protocols to analyse nuclear introns in vertebrates, and are testing them in a population genetic study of marbled murrelets Brachyramphus marmoratus. Here we present protocols and results for introns for aldolase B, alpha-enolase, glyceraldehyde-3-phosphate dehydrogenase and lamin A. Results suggest that this approach presents a potentially powerful method for detecting genetic variation within and among local populations and species of animals: (i) a variety of genes can be surveyed, including genes of special interest such as those involved in disease resistance; (ii) assays are rapid and relatively inexpensive; (iii) large numbers of genes can be assayed, enabling accurate estimation of variation in the total genome; (iv) almost any mutation can be detected in the genes amplified; (v) the exact nature of variation can be investigated by sequence analysis if desired; (vi) statistical methods previously developed for proteins and/or sequence data can be used; (vii) protocols can be easily transferred to other species and other laboratories; and (viii) assays can be performed on old or degraded samples, blood or museum skins, so that animals need not be killed. Results of analyses for murrelets support earlier evidence that North American and Asiatic subspecies represent reproductively isolated species, and that genetic differences exist among murrelets from different sites within North America.


Asunto(s)
Aves/genética , Variación Genética , Intrones/genética , Polimorfismo Conformacional Retorcido-Simple , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Fructosa-Bifosfato Aldolasa/genética , Genética de Población , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Lamina Tipo A , Laminas , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Fosfopiruvato Hidratasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA