Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(18): 5053-8, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27035985

RESUMEN

Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper [Boothby TC, et al. (2015) Proc Natl Acad Sci USA 112(52):15976-15981], the authors concluded that the tardigrade Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional horizontal gene transfer (fHGT) and speculated that fHGT was likely formative in the evolution of cryptobiosis. We independently sequenced the genome of H. dujardini As expected from whole-organism DNA sampling, our raw data contained reads from nontarget genomes. Filtering using metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior assembly metrics to the previously published assembly. Additional microbial contamination likely remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 0.2% strong candidates for fHGT from bacteria and 0.2% strong candidates for fHGT from nonmetazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT into H. dujardini accounts for at most 1-2% of genes and that the proposal that one-sixth of tardigrade genes originate from functional HGT events is an artifact of undetected contamination.


Asunto(s)
Transferencia de Gen Horizontal , Tardigrada/genética , Animales , Artrópodos/genética , Genoma , Datos de Secuencia Molecular , Filogenia
2.
BMC Evol Biol ; 12: 63, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22577801

RESUMEN

BACKGROUND: Understanding which parts of the genome have been most influenced by adaptive evolution remains an unsolved puzzle. Some evidence suggests that selection has the greatest impact on regions of the genome that interact with other evolving genomes, including loci that are involved in host-parasite co-evolutionary processes. In this study, we used a population genetic approach to test this hypothesis by comparing DNA sequences of 30 putative immune system genes in the crustacean Daphnia pulex with 24 non-immune system genes. RESULTS: In support of the hypothesis, results from a multilocus extension of the McDonald-Kreitman (MK) test indicate that immune system genes as a class have experienced more adaptive evolution than non-immune system genes. However, not all immune system genes show evidence of adaptive evolution. Additionally, we apply single locus MK tests and calculate population genetic parameters at all loci in order to characterize the mode of selection (directional versus balancing) in the genes that show the greatest deviation from neutral evolution. CONCLUSIONS: Our data are consistent with the hypothesis that immune system genes undergo more adaptive evolution than non-immune system genes, possibly as a result of host-parasite arms races. The results of these analyses highlight several candidate loci undergoing adaptive evolution that could be targeted in future studies.


Asunto(s)
Daphnia/genética , Daphnia/inmunología , Evolución Molecular , Animales , Daphnia/parasitología , Fenómenos Inmunogenéticos , Selección Genética
3.
BMC Genomics ; 10: 175, 2009 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-19386092

RESUMEN

BACKGROUND: Branchiopod crustaceans in the genus Daphnia are key model organisms for investigating interactions between genes and the environment. One major theme of research on Daphnia species has been the evolution of resistance to pathogens and parasites, but lack of knowledge of the Daphnia immune system has limited the study of immune responses. Here we provide a survey of the immune-related genome of D. pulex, derived from the newly completed genome sequence. Genes likely to be involved in innate immune responses were identified by comparison to homologues from other arthropods. For each candidate, the gene model was refined, and we conducted an analysis of sequence divergence from homologues from other taxa. RESULTS AND CONCLUSION: We found that some immune pathways, in particular the TOLL pathway, are fairly well conserved between insects and Daphnia, while other elements, in particular antimicrobial peptides, could not be recovered from the genome sequence. We also found considerable variation in gene family copy number when comparing Daphnia to insects and present phylogenetic analyses to shed light on the evolution of a range of conserved immune gene families.


Asunto(s)
Daphnia/genética , Daphnia/inmunología , Genoma , Filogenia , Animales , Dosificación de Gen , Genes de Insecto , Sistema Inmunológico/fisiología , Modelos Genéticos , Familia de Multigenes , Alineación de Secuencia , Análisis de Secuencia de ADN
4.
PLoS Pathog ; 2(10): e94, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17040125

RESUMEN

Wolbachia are well known as bacterial symbionts of arthropods, where they are reproductive parasites, but have also been described from nematode hosts, where the symbiotic interaction has features of mutualism. The majority of arthropod Wolbachia belong to clades A and B, while nematode Wolbachia mostly belong to clades C and D, but these relationships have been based on analysis of a small number of genes. To investigate the evolution and relationships of Wolbachia symbionts we have sequenced over 70 kb of the genome of wOvo, a Wolbachia from the human-parasitic nematode Onchocerca volvulus, and compared the genes identified to orthologues in other sequenced Wolbachia genomes. In comparisons of conserved local synteny, we find that wBm, from the nematode Brugia malayi, and wMel, from Drosophila melanogaster, are more similar to each other than either is to wOvo. Phylogenetic analysis of the protein-coding and ribosomal RNA genes on the sequenced fragments supports reciprocal monophyly of nematode and arthropod Wolbachia. The nematode Wolbachia did not arise from within the A clade of arthropod Wolbachia, and the root of the Wolbachia clade lies between the nematode and arthropod symbionts. Using the wOvo sequence, we identified a lateral transfer event whereby segments of the Wolbachia genome were inserted into the Onchocerca nuclear genome. This event predated the separation of the human parasite O. volvulus from its cattle-parasitic sister species, O. ochengi. The long association between filarial nematodes and Wolbachia symbionts may permit more frequent genetic exchange between their genomes.


Asunto(s)
Artrópodos/microbiología , Genoma Bacteriano , Nematodos/microbiología , Wolbachia/genética , Animales , Secuencia de Bases , ADN Bacteriano , Evolución Molecular , Transferencia de Gen Horizontal , Datos de Secuencia Molecular , Filogenia , Simbiosis/genética , Sintenía , Wolbachia/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA