Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
NAR Genom Bioinform ; 6(2): lqae057, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38800828

RESUMEN

Most clinical diagnostic and genomic research setups focus almost exclusively on coding regions and essential splice sites, thereby overlooking other non-coding variants. As a result, intronic variants that can promote mis-splicing events across a range of diseases, including cancer, are yet to be systematically investigated. Such investigations would require both genomic and transcriptomic data, but there currently exist very few datasets that satisfy these requirements. We address this by developing a single-nucleus full-length RNA-sequencing approach that allows for the detection of potentially pathogenic intronic variants. We exemplify the potency of our approach by applying pancreatic cancer tumor and tumor-derived specimens and linking intronic variants to splicing dysregulation. We specifically find that prominent intron retention and pseudo-exon activation events are shared by the tumors and affect genes encoding key transcriptional regulators. Our work paves the way for the assessment and exploitation of intronic mutations as powerful prognostic markers and potential therapeutic targets in cancer.

2.
Cancer Res Commun ; 4(8): 2008-2024, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39007350

RESUMEN

Treatment of patients with locally advanced rectal cancer (RC) is based on neoadjuvant chemoradiotherapy followed by surgery. In order to reduce the development of therapy resistance, it is necessary to further improve previous treatment approaches. Recent in vivo experimental studies suggested that the reduction of tumor hypoxia by tumor vessel normalization (TVN), through the inhibition of the glycolytic activator PFKFB3, could significantly improve tumor response to therapy. We have evaluated in vitro and in vivo the effects of the PFKFB3 inhibitor 2E-3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) on cell survival, clonogenicity, migration, invasion, and metabolism using colorectal cancer cells, patient-derived tumor organoid (PDO), and xenograft (PDX). 3PO treatment of colorectal cancer cells increased radiation-induced cell death and reduced cancer cell invasion. Moreover, gene set enrichment analysis shows that 3PO is able to alter the metabolic status of PDOs toward oxidative phosphorylation. Additionally, in vivo neoadjuvant treatment with 3PO induced TVN, alleviated tumor hypoxia, and increased tumor necrosis. Our results support PFKFB3 inhibition as a possible future neoadjuvant addition for patients with RC. SIGNIFICANCE: Novel therapies to better treat colorectal cancer are necessary to improve patient outcomes. Therefore, in this study, we evaluated the combination of a metabolic inhibitor (3PO) and standard radiotherapy in different experimental settings. We have observed that the addition of 3PO increased radiation effects, ultimately improving tumor cell response to therapy.


Asunto(s)
Fosfofructoquinasa-2 , Neoplasias del Recto , Animales , Humanos , Ratones , Línea Celular Tumoral , Necrosis , Terapia Neoadyuvante/métodos , Neovascularización Patológica/tratamiento farmacológico , Fosfofructoquinasa-2/antagonistas & inhibidores , Piridinas/farmacología , Piridinas/uso terapéutico , Neoplasias del Recto/tratamiento farmacológico , Neoplasias del Recto/radioterapia , Hipoxia Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Mol Oncol ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39253995

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has limited treatment options, emphasizing the urgent need for effective therapies. The predominant driver in PDAC is mutated KRAS proto-oncogene, KRA, present in 90% of patients. The emergence of direct KRAS inhibitors presents a promising avenue for treatment, particularly those targeting the KRASG12C mutated allele, which show encouraging results in clinical trials. However, the development of resistance necessitates exploring potent combination therapies. Our objective was to identify effective KRASG12C-inhibitor combination therapies through unbiased drug screening. Results revealed synergistic effects with son of sevenless homolog 1 (SOS1) inhibitors, tyrosine-protein phosphatase non-receptor type 11 (PTPN11)/Src homology region 2 domain-containing phosphatase-2 (SHP2) inhibitors, and broad-spectrum multi-kinase inhibitors. Validation in a novel and unique KRASG12C-mutated patient-derived organoid model confirmed the described hits from the screening experiment. Our findings propose strategies to enhance KRASG12C-inhibitor efficacy, guiding clinical trial design and molecular tumor boards.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA