Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Esthet Restor Dent ; 35(7): 1121-1130, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37073605

RESUMEN

OBJECTIVE: The present study determined the mechanical properties and the wear behavior, as results of the micro(nano)structure, of the enamel, transition, and dentine layers, which comprise the polychromic multilayer zirconia materials of hybrid composition fabricated by milling technology. MATERIALS AND METHODS: Prismatic blocks were fabricated from two commercial pre-sintered dental polychromic multilayer zirconia materials of hybrid composition, IPS e.max ZirCAD Prime (medium and high translucency, from the dentine to the incisal layer) and 3D Pro ML (translucency gradient, from the dentine to the incisal layer) by milling technique, and then, cut into 3 distinct parts to separate the enamel, transition, and dentine layers. The samples were sintered, thermally treated (similarly to the glazing procedure), and polished for characterization. Their microstructure, mechanical properties (determined by nanoindentation and microhardness), and wear behavior (evaluated by scratch test), were examined. RESULTS: The produced materials had a homogeneous and dense nanostructure, where the grain size decreased from the enamel to dentine layer. The mechanical properties decreased from the dentine to enamel layer. However, the three layers manifested similar dynamic friction coefficient. CONCLUSION: The differences in the above properties in the three layers negligibly influenced the wear behavior of the entire multilayer zirconia material. CLINICAL SIGNIFICANCE: The properties of dental restorations produced from polychromic multilayer zirconia of hybrid composition by milling technology (i.e., strong, non-fragile, and esthetic materials), anticipate good performance in oral cavity.


Asunto(s)
Cerámica , Materiales Dentales , Materiales Dentales/química , Cerámica/química , Ensayo de Materiales , Circonio/química , Propiedades de Superficie , Porcelana Dental/química
2.
J Acoust Soc Am ; 149(4): 2854, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33940906

RESUMEN

With focused ultrasound (FUS) gaining popularity as a therapeutic modality for brain diseases, the need for skull phantoms that are suitable for evaluating FUS protocols is increasing. In the current study, the acoustical properties of several three-dimensional (3D) printed thermoplastic samples were evaluated to assess their suitability to mimic human skull and bone accurately. Samples were 3D printed using eight commercially available thermoplastic materials. The acoustic properties of the printed samples, including attenuation coefficient, speed of sound, and acoustic impedance, were investigated using transmission-through and pulse-echo techniques. The ultrasonic attenuation, estimated at a frequency of 1.1 MHz, varied from approximately 7 to 32 dB/cm. The frequency dependence of attenuation was described by a power law in the frequency range of 0.2-3.5 MHz, and the exponential index of frequency was found to vary from 1.30 to 2.24. The longitudinal velocity of 2.7 MHz sound waves was in the range of 1700-3050 m/s. The results demonstrate that thermoplastics could potentially be used for the 3D construction of high-quality skull phantoms.


Asunto(s)
Acústica , Sonido , Humanos , Fantasmas de Imagen , Impresión Tridimensional , Ultrasonido , Ultrasonografía
3.
J Med Ultrasound ; 29(4): 239-249, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127403

RESUMEN

BACKGROUND: It has been demonstrated that agar-based gel phantoms can emulate the acoustic parameters of real tissues and are the most commonly used tissue-mimicking materials for high-intensity focused ultrasound applications. The following study presents ultrasonic attenuation measurements of agar-based phantoms with different concentrations of additives (percent of agar, silicon dioxide and evaporated milk) in an effort of matching the material's acoustic property as close as possible to human tissues. METHODS: Nine different agar-based phantoms with various amounts of agar, silicon dioxide, and evaporated milk were prepared. Attenuation measurements of the samples were conducted using the through-transmission immersion techniques. RESULTS: The ultrasonic attenuation coefficient of the agar-based phantoms varied in the range of 0.30-1.49 dB/cm-MHz. The attenuation was found to increase in proportion to the concentration of agar and evaporated milk. Silicon dioxide was found to significantly contribute to the attenuation coefficient up to 4% weight to volume (w/v) concentration. CONCLUSION: The acoustic attenuation coefficient of agar-based phantoms can be adjusted according to the tissue of interest in the range of animal and human tissues by the proper selection of agar, silicon dioxide, and evaporated milk.

4.
Nanomaterials (Basel) ; 14(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38607135

RESUMEN

This study considers the influence of purity and surface area on the thermal and oxidation properties of hexagonal boron nitride (h-BN) nanoplatelets, which represent crucial factors in high-temperature oxidizing environments. Three h-BN nanoplatelet-based materials, synthesized with different purity levels and surface areas (~3, ~56, and ~140 m2/g), were compared, including a commercial BN reference. All materials were systematically analyzed by various characterization techniques, including gas pycnometry, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared radiation, X-ray photoelectron spectroscopy, gas sorption analysis, and thermal gravimetric analysis coupled with differential scanning calorimetry. Results indicated that the thermal stability and oxidation resistance of the synthesized materials were improved by up to ~13.5% (or by 120 °C) with an increase in purity. Furthermore, the reference material with its high purity and low surface area (~4 m2/g) showed superior performance, which was attributed to the minimized reactive sites for oxygen diffusion due to lower surface area availability and fewer possible defects, highlighting the critical roles of both sample purity and accessible surface area in h-BN thermo-oxidative stability. These findings highlight the importance of focusing on purity and surface area control in developing BN-based nanomaterials, offering a path to enhance their performance in extreme thermal and oxidative conditions.

5.
Materials (Basel) ; 16(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38068222

RESUMEN

The adsorption of actinide ions (Am(III) and U(VI)) from aqueous solutions using pristine and oxidized carbon fabrics was investigated by means of batch experiments at different pH values (pH 4, 7 and 9) and temperatures (25, 35 and 45 °C) under ambient atmospheric conditions. The experimental results indicated that both the pH and the fabric texture affected the adsorption rate and the relative removal efficiency, which was 70% and 100% for Am(III) and U(VI), respectively. The Kd (L/kg) values for U(VI) were generally found to be higher (2 < log10(Kd)< 3) than the corresponding values for Am(III) adsorption (1.5 < log10(Kd) < 2). The data obtained from the experiments regarding the temperature effect implied that the relative adsorption for both actinides increases with temperature and that adsorption is an endothermic and entropy-driven reaction. The application of the fabrics to remove the two actinides from contaminated seawater samples showed that both the relative removal efficiency and the Kd values decreased significantly due to the presence of competitive cations (e.g., Ca2+ and Fe3+) and complexing anions (CO32-) in the respective waters. Nevertheless, the removal efficiency was still remarkable (50% and 90% for Am(III) and U(VI), respectively), demonstrating that these materials could be attractive candidates for the treatment of radionuclide/actinide-contaminated waters.

6.
Nanomaterials (Basel) ; 12(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35889697

RESUMEN

Microbial electrosynthesis (MES) can sustainably convert CO2 to products and significant research is currently being conducted towards this end, mainly in laboratory-scale studies. The high-cost ion exchange membrane, however, is one of the main reasons hindering the industrialization of MES. This study investigates the conversion of CO2 (as a sole external carbon source) to CH4 using membraneless MES inoculated with anaerobic granular sludge. Three types of electrodes were tested: carbon cloth (CC) and CC functionalized with Cu NPs, where Cu NPs were deposited for 15 and 45 min, respectively. During the MES experiment, which lasted for 144 days (six cycles), methane was consistently higher in the serum bottles with CC electrodes and applied voltage. The highest CH4 (around 46%) was found in the second cycle after 16 days. The system's performance declined during the following cycles; nevertheless, the CH4 composition was twice as high compared to the serum bottles without voltage. The MES with Cu NPs functionalized CC electrodes had a higher performance than the MES with plain CC electrodes. Microbial profile analysis showed that the Methanobacterium was the most dominant genus in all samples and it was found in higher abundance on the cathodes, followed by the anodes, and then in the suspended biomass. The genus Geobacter was identified only on the anodes regarding relative bacterial abundance at around 6-10%. Desulfovibrio was the most dominant genus in the cathodes; however, its relative abundance was significantly higher for the cathodes with Cu NPs.

7.
Environ Sci Pollut Res Int ; 29(58): 87245-87256, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35802326

RESUMEN

The current study presented a novel process of biogas upgrading to biomethane (higher than 97%) based on anaerobic sludge and zero-valent iron (ZVI) system. When ZVI was added into an aquatic system with anaerobic granular sludge (AnGrSl) under anaerobic abiotic conditions, H2 was generated. Then, the H2 and CO2 were converted by the hydrogenotrophic methanogens to CH4. Biogas upgrading to biomethane was achieved in 4 days in the AnGrSl system (50 g L-1 ZVI, initial pH 5 and 20 g L-1 NaHCO3). In this system, when zero-valent scrap iron (ZVSI) was added instead of ZVI, a more extended period (21 days) was required to achieve biogas upgrading. X-ray diffraction (XRD) analysis revealed that the materials in a reactor with CO2 or biogas headspace, exhibited a mixture of ferrite and the iron carbonate phase of siderite (FeCO3), with the latter being the dominant phase. VOCs analysis in raw biogas (in the system of anaerobic sludge and ZVI) highlighted the reduction of low mass straight- and branched-chain alkanes (C6-C10). Also, H2S and NH3 were found to be substantially reduced when the anaerobic sludge was exposed to ZVI compared to the cases where ZVI was not added. This study found that simultaneously with biogas upgrading, VOCs, H2S and NH3 can be removed in a system of ZVI or ZVSI and AnGrSl under aquatic anaerobic conditions.


Asunto(s)
Aguas del Alcantarillado , Compuestos Orgánicos Volátiles , Aguas del Alcantarillado/química , Metano , Biocombustibles , Anaerobiosis , Hierro/química , Eliminación de Residuos Líquidos , Reactores Biológicos , Dióxido de Carbono
8.
Ultrasonics ; 113: 106357, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33548756

RESUMEN

This study describes the development and characterization of an agar-based soft tissue-mimicking material (TMM) doped with wood powder destined for fabricating MRgFUS applications. The main objective of the following work was to investigate the suitability of wood powder as an inexpensive alternative in replacing other added materials that have been suggested in previous studies for controlling the ultrasonic properties of TMMs. The characterization procedure involved a series of experiments designed to estimate the acoustic (attenuation coefficient, absorption coefficient, propagation speed, and impedance), thermal (conductivity, diffusivity, specific heat capacity), and MR properties (T1 and T2 relaxation times) of the wood-powder doped material. The developed TMM (2% w/v agar and 4% w/v wood powder) as expected demonstrated compatibility with MRI scanner following images artifacts evaluation. The acoustic attenuation coefficient of the proposed material was measured over the frequency range of 1.1-3 MHz and found to be nearly proportional to frequency. The measured attenuation coefficient was 0.48 dB/cm at 1 MHz which was well within the range of soft tissue. Temperatures over 37 °C proved to increase marginally the attenuation coefficient. Following the transient thermoelectric method, the acoustic absorption coefficient was estimated at 0.34 dB/cm-MHz. The estimated propagation speed (1487 m/s) was within the range of soft tissue at room temperature, while it significantly increased with higher temperature. The material possessed an acoustic impedance of 1.58 MRayl which was found to be comparable to the corresponding value of muscle tissue. The thermal conductivity of the material was estimated at 0.51 W/m K. The measured relaxation times T1 (844 ms) and T2 (66 ms) were within the range of values found in the literature for soft tissue. The phantom was tested for its suitability for evaluating MRgFUS thermal protocols. High acoustic energy was applied, and temperature change was recorded using thermocouples and MR thermometry. MR thermal maps were acquired using single-shot Echo Planar Imaging (EPI) gradient echo sequence. The TMM matched adequately the acoustic and thermal properties of human tissues and through a series of experiments, it was proven that wood concentration enhances acoustic absorption. Experiments using MR thermometry demonstrated the usefulness of this phantom to evaluate ultrasonic thermal protocols by monitoring peak temperatures in real-time. Thermal lesions formed above a thermal dose were observed in high-resolution MR images and visually in dissections of the proposed TMM.


Asunto(s)
Materiales Biomiméticos , Ultrasonido Enfocado de Alta Intensidad de Ablación , Fantasmas de Imagen , Agar , Artefactos , Diseño de Equipo , Polvos , Temperatura , Madera
9.
Materials (Basel) ; 13(7)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283674

RESUMEN

In this work, the synthesis and characterization of hydrogenated diamond-like carbon (HDLC) nanocomposite thin films with embedded metallic Ag and Cu nanoparticles (NPs) are studied. These nanocomposite films were deposited using a hybrid technique with independent control over the carbon and metal sources. The metallic nanoparticles were directly deposited from the gas phase, avoiding surface diffusion of metal species on the deposition surface. The structural features, surface topography and optical properties of pure and nanocomposite HDLC films are studied and the effect of metal introduction into the carbon matrix is discussed. The interactions between the carbon ion beam and the NPs are considered and it is demonstrated that the nanocomposite HDLC:metal films, especially for Cu NPs, can retain the transparency level of the pure HDLC, by limiting the interactions between metal and carbon during deposition.

10.
Nanomaterials (Basel) ; 10(12)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291505

RESUMEN

Nanotubes made of boron nitride (BN) and carbon have attracted considerable attention within the literature due to their unique mechanical, electrical and thermal properties. In this work, BN and carbon nanotubes, exhibiting high purity (>99%) and similar surface areas (~200 m2/g), were systematically investigated for their thermal stability and oxidation behavior by combining thermal gravimetric analysis and differential scanning calorimetry methods at temperatures of up to ~1300 °C under a synthetic air flow environment. The BN nanotubes showed a good resistance to oxidation up to ~900 °C and fully transformed to boron oxide up to ~1100 °C, while the carbon nanotubes were stable up to ~450 °C and almost completely combusted up to ~800 °C. The different oxidation mechanisms are attributed to the different chemical nature of the two types of nanotubes.

11.
J Biomech ; 41(15): 3285-9, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-18922534

RESUMEN

A longstanding challenge in accurate mechanical characterization of engineered and biological tissues is maintenance of both stable sample hydration and high instrument signal resolution. Here, we describe the modification of an instrumented indenter to accommodate nanomechanical characterization of biological and synthetic tissues in liquid media, and demonstrate accurate acquisition of force-displacement data that can be used to extract viscoelastoplastic properties of hydrated gels and tissues. We demonstrate the validity of this approach via elastoplastic analysis of relatively stiff, water-insensitive materials of elastic moduli E>1000 kPa (borosilicate glass and polypropylene), and then consider the viscoelastic response and representative mechanical properties of compliant, synthetic polymer hydrogels (polyacrylamide-based hydrogels of varying mol%-bis crosslinker) and biological tissues (porcine skin and liver) of E<500 kPa. Indentation responses obtained via loading/unloading hystereses and contact creep loading were highly repeatable, and the inferred E were in good agreement with available macroscopic data for all samples. As expected, increased chemical crosslinking of polyacrylamide increased stiffness (E40 kPa) and decreased creep compliance. E of porcine liver (760 kPa) and skin (222 kPa) were also within the range of macroscopic measurements reported for a limited subset of species and disease states. These data show that instrumented indentation of fully immersed samples can be reliably applied for materials spanning several orders of magnitude in stiffness (E=kPa-GPa). These capabilities are particularly important to materials design and characterization of macromolecules, cells, explanted tissues, and synthetic extracellular matrices as a function of spatial position, degree of hydration, or hydrolytic/enzymatic/corrosion reaction times.


Asunto(s)
Tejido Conectivo/fisiología , Geles/química , Ensayo de Materiales/instrumentación , Ensayo de Materiales/métodos , Transductores , Módulo de Elasticidad , Diseño de Equipo , Análisis de Falla de Equipo , Dureza , Estrés Mecánico , Viscosidad
12.
J Appl Biomater Funct Mater ; 16(4): 230-240, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29974806

RESUMEN

Background Wear and corrosion have been identified as two of the major forms of medical implant failures. This study aims to improve the surface, protective and tribological characteristics of bare metals used for medical implants, so as to improve scratch resistance and increase lifetime. Methods Hydrogenated amorphous carbon (a-C:H) films were deposited, using plasma enhanced chemical vapor deposition (PECVD), on stainless steel (SS), titanium (Ti) and niobium (Nb) metal plates. Nanomechanical and nanotribological responses were investigated before and after a-C:H deposition. Film thickness and density were quantified through X-ray reflectivity, and surface morphology before and after deposition were measured using atomic force microscopy, whereas the tribomechanical characteristics were probed using instrumented indentation. Results and conclusions Films of approximately 40 nm in thickness and density of 1.7 g/cm3 were deposited. The a-C:H films reduce the roughness and coefficient of friction while improving the tribomechanical response compared with bare metals for Ti, SS and Nb plates. The very good tribomechanical properties of a-C:H make it a promising candidate material for protective coating on metallic implants.


Asunto(s)
Materiales Biocompatibles/química , Nanoestructuras/química , Niobio/química , Acero Inoxidable/química , Titanio/química , Fenómenos Biomecánicos , Carbono/química , Hidrógeno/química , Membranas Artificiales , Tamaño de la Partícula , Propiedades de Superficie
13.
Nanomaterials (Basel) ; 8(4)2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29601507

RESUMEN

This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a-C:H:Me) of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD) and Physical Vapor Deposition (PVD) technologies. The a-C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF) plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC) technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti). The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a-C:H:Ag and a-C:H:Ti) exhibited enhanced nanoscratch resistance (up to +50%) and low values of friction coefficient (<0.05), properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

14.
J Mech Behav Biomed Mater ; 40: 240-251, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25255419

RESUMEN

In-stent restenosis (ISR) remains a significant limitation despite the considerable previous clinical and investigative emphasis on the problem. Complications arising from the interaction of stent materials with the surrounding vessel wall as well as from the mechanical forces developing after implantation, play an important role in the development of ISR. To investigate the relation between mechanical factors and stent structural integrity, and to identify any structural weakness points on the geometry of commercially available Stainless Steel and Cobalt-Chromium stents, accelerated pulsatile durability tests were carried out in a simulated physiological environment. Potential spatial variations in the mechanical properties on stent struts and their role in the observed premature failures of the stent devices during operation were also examined. Fretting wear and fatigue-induced fractures were found on stent surfaces after exposure to cyclic loading similar to that arising in vivo. Nanoindentation studies performed on various locations along the stent struts have shown that the hardness of specific stent locations significantly increases after mechanical expansion. The increase in hardness was associated with a reduction of the material's ability to dissipate energy in plastic deformations, therefore an increased vulnerability to fracture and fatigue. We conclude that the locations of fatigue fractures in stent struts are controlled not only by the geometrically-driven stress concentrations developing during cyclic loading but also by the local material mechanical changes that are imparted on various parts of the stent during the deployment process.


Asunto(s)
Cromo , Cobalto , Acero Inoxidable , Stents , Constricción Patológica , Ensayo de Materiales , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA