RESUMEN
Significance: Unique to the branched-chain aminotransferase (BCAT) proteins is their redox-active CXXC motif. Subjected to post-translational modification by reactive oxygen species and reactive nitrogen species, these proteins have the potential to adopt numerous cellular roles, which may be fundamental to their role in oncogenesis and neurodegenerative diseases. An understanding of the interplay of the redox regulation of BCAT with important cell signaling mechanisms will identify new targets for future therapeutics. Recent Advances: The BCAT proteins have been assigned novel thiol oxidoreductase activity that can accelerate the refolding of proteins, in particular when S-glutathionylated, supporting a chaperone role for BCAT in protein folding. Other metabolic proteins were also shown to have peroxide-mediated redox associations with BCAT, indicating that the cellular function of BCAT is more diverse. Critical Issues: While the role of branched-chain amino acid metabolism and its metabolites has dominated aspects of cancer research, less is known about the role of BCAT. The importance of the CXXC motif in regulating the BCAT activity under hypoxic conditions, a characteristic of tumors, has not been addressed. Understanding how these proteins operate under various cellular redox conditions will become important, in particular with respect to their moonlighting roles. Future Directions: Advances in the quantification of thiols, their measurement, and the manipulation of metabolons that rely on redox-based interactions should accelerate the investigation of the cellular role of moonlighting proteins such as BCAT. Given the importance of cross talk between signaling pathways, research should focus more on these "housekeeping" proteins paying attention to their wider application. Antioxid. Redox Signal. 34, 1048-1067.
Asunto(s)
Neoplasias/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Transaminasas/metabolismo , Secuencias de Aminoácidos/genética , Humanos , Neoplasias/genética , Neoplasias/patología , Oxidación-Reducción , Proteína Disulfuro Reductasa (Glutatión)/genética , Pliegue de Proteína , Procesamiento Proteico-Postraduccional/genética , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transaminasas/genética , Hipoxia Tumoral/genéticaRESUMEN
The cytosolic branched chain aminotransferase (BCATc) protein has been found to be highly expressed in breast cancer subtypes, including triple negative breast cancer (TNBC), compared with normal breast tissue. The catabolism of branched-chain amino acids (BCAAs) by BCATc leads to the production of glutamate and key metabolites which further drive the TCA cycle, important for cellular metabolism and growth. Upregulation of BCATc has been associated with increased cell proliferation, cell cycle progression and metastasis in several malignancies including breast, gliomas, ovarian and colorectal cancer but the underlying mechanisms are unclear. As nutrient levels of BCAAs, substrates of BCATc, regulate the PI3K/Akt pathway we hypothesized that increased expression of BCATc would contribute to tumour cell growth through upregulation of the insulin/IGF-1 signalling pathway. This pathway is known to potentiate proliferation and metastasis of malignant cells through the activation of PI3K/Akt and the RAS/ERK signalling cascades. Here we show that knockdown of BCATc significantly reduced insulin and IGF-1-mediated proliferation, migration and invasion of TNBC cells. An analysis of this pathway showed that when overexpressed BCATc regulates proliferation through the PI3K/Akt axis, whilst simultaneously attenuating the Ras/Erk pathway indicating that BCATc acts as a conduit between these two pathways. This ultimately led to an increase in FOXO3a, a key regulator of cell proliferation and Nrf2, which mediates redox homeostasis. Together this data indicates that BCATc regulates TNBC cell proliferation, migration and invasion through the IGF-1/insulin PI3K/Akt pathway, culminating in the upregulation of FOXO3a and Nrf2, pointing to a novel therapeutic target for breast cancer treatment.
RESUMEN
BACKGROUND: Differential diagnosis of people presenting with mild cognitive impairment (MCI) that will progress to Alzheimer's disease (AD) remains clinically challenging. Current criteria used to define AD include a series of neuropsychological assessments together with relevant imaging analysis such as magnetic resonance imaging (MRI). The clinical sensitivity and specificity of these assessments would be improved by the concomitant use of novel serum biomarkers. The branched chain aminotransferase proteins (BCAT) are potential candidates as they are significantly elevated in AD brain, correlate with Braak Stage, and may have a role in AD pathology. OBJECTIVE: In this hypothesis-driven project, we aimed to establish if serum BCAT and its metabolites are significantly altered in AD participants and assess their role as markers of disease pathology. METHODS: Serum amino acids were measured using a triple quadrupole mass spectrometer for tandem mass spectroscopy together with BCAT levels using western blot analysis, coupled with neuropsychological assessments and MRI. RESULTS: We present data supporting a substantive mutually correlated system between BCAT and glutamate, neuropsychological tests, and MRI for the diagnosis of AD. These three domains, individually, and in combination, show good utility in discriminating between groups. Our model indicates that BCAT and glutamate accurately distinguish between control and AD participants and in combination with the neuropsychological assessment, MoCA, improved the overall sensitivity to 1.00 and specificity to 0.978. CONCLUSION: These findings indicate that BCAT and glutamate have potential to improve the clinical utility and predictive power of existing methods of AD assessment and hold promise as early indicators of disease pathology.
Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Cognición , Hipocampo/patología , Anciano , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Aminoácidos/sangre , Aminoácidos/metabolismo , Apolipoproteínas E/genética , Biomarcadores/sangre , Western Blotting , Estudios de Casos y Controles , Disfunción Cognitiva/sangre , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/patología , Disfunción Cognitiva/psicología , Diagnóstico Precoz , Femenino , Ácido Glutámico/sangre , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Pruebas de Estado Mental y Demencia , Neuroimagen , Tamaño de los Órganos , Espectrometría de Masas en Tándem , Transaminasas/sangre , Transaminasas/metabolismoRESUMEN
AIMS: The human branched-chain aminotransferase proteins (hBCATm and hBCATc) are regulated through oxidation and S-nitrosation. However, it remains unknown whether they share common redox characteristics to enzymes such as protein disulfide isomerase (PDI) in terms of regulating cellular repair and protein misfolding. RESULTS: Here, similar to PDI, the hBCAT proteins showed dithiol-disulfide isomerase activity that was mediated through an S-glutathionylated mechanism. Site-directed mutagenesis of the active thiols of the CXXC motif demonstrates that they are fundamental to optimal protein folding. Far Western analysis indicated that both hBCAT proteins can associate with PDI. Co-immunoprecipitation studies demonstrated that hBCATm directly binds to PDI in IMR-32 cells and the human brain. Electron and confocal microscopy validated the expression of PDI in mitochondria (using Mia40 as a mitochondrial control), where both PDI and Mia40 were found to be co-localized with hBCATm. Under conditions of oxidative stress, this interaction is decreased, suggesting that the proposed chaperone role for hBCATm may be perturbed. Moreover, immunohistochemistry studies show that PDI and hBCAT are expressed in the same neuronal and endothelial cells of the vasculature of the human brain, supporting a physiological role for this binding. INNOVATION: This study identifies a novel redox role for hBCAT and confirms that hBCATm differentially binds to PDI under cellular stress. CONCLUSION: These studies indicate that hBCAT may play a role in the stress response of the cell as a novel redox chaperone, which, if compromised, may result in protein misfolding, creating aggregates as a key feature in neurodegenerative conditions such as Alzheimer's disease.