RESUMEN
Understanding the origins of variation in agricultural pathogens is of fundamental interest and practical importance, especially for diseases that threaten food security. Fusarium oxysporum is among the most important of soil-borne pathogens, with a global distribution and an extensive host range. The pathogen is considered to be asexual, with horizontal transfer of chromosomes providing an analog of assortment by meiotic recombination. Here, we challenge those assumptions based on the results of population genomic analyses, describing the pathogen's diversity and inferring its origins and functional consequences in the context of a single, long-standing agricultural system. We identify simultaneously low nucleotide distance among strains, and unexpectedly high levels of genetic and genomic variability. We determine that these features arise from a combination of genome-scale recombination, best explained by widespread sexual reproduction, and presence-absence variation consistent with chromosomal rearrangement. Pangenome analyses document an accessory genome more than twice the size of the core genome, with contrasting evolutionary dynamics. The core genome is stable, with low diversity and high genetic differentiation across geographic space, while the accessory genome is paradoxically more diverse and unstable but with lower genetic differentiation and hallmarks of contemporary gene flow at local scales. We suggest a model in which episodic sexual reproduction generates haplotypes that are selected and then maintained through clone-like dynamics, followed by contemporary genomic rearrangements that reassort the accessory genome among sympatric strains. Taken together, these processes contribute unique genome content, including reassortment of virulence determinants that may explain observed variation in pathogenic potential.
Asunto(s)
Fusarium , Fusarium/genética , Especificidad del Huésped , Genómica , Agricultura , Enfermedades de las Plantas/genéticaRESUMEN
Repetitive subconcussive head impacts (RSHI) are believed to induce sub-clinical brain injuries, potentially resulting in cumulative, long-term brain alterations. This study explores patterns of longitudinal brain white matter changes across sports with RSHI-exposure. A systematic literature search identified 22 datasets with longitudinal diffusion magnetic resonance imaging data. Four datasets were centrally pooled to perform uniform quality control and data preprocessing. A total of 131 non-concussed active athletes (American football, rugby, ice hockey; mean age: 20.06 ± 2.06 years) with baseline and post-season data were included. Nonparametric permutation inference (one-sample t tests, one-sided) was applied to analyze the difference maps of multiple diffusion parameters. The analyses revealed widespread lateralized patterns of sports-season-related increases and decreases in mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) across spatially distinct white matter regions. Increases were shown across one MD-cluster (3195 voxels; mean change: 2.34%), one AD-cluster (5740 voxels; mean change: 1.75%), and three RD-clusters (817 total voxels; mean change: 3.11 to 4.70%). Decreases were shown across two MD-clusters (1637 total voxels; mean change: -1.43 to -1.48%), two RD-clusters (1240 total voxels; mean change: -1.92 to -1.93%), and one AD-cluster (724 voxels; mean change: -1.28%). The resulting pattern implies the presence of strain-induced injuries in central and brainstem regions, with comparatively milder physical exercise-induced effects across frontal and superior regions of the left hemisphere, which need further investigation. This article highlights key considerations that need to be addressed in future work to enhance our understanding of the nature of observed white matter changes, improve the comparability of findings across studies, and promote data pooling initiatives to allow more detailed investigations (e.g., exploring sex- and sport-specific effects).
Asunto(s)
Traumatismos en Atletas , Conmoción Encefálica , Sustancia Blanca , Adolescente , Adulto , Humanos , Masculino , Adulto Joven , Atletas , Traumatismos en Atletas/diagnóstico por imagen , Traumatismos en Atletas/patología , Traumatismos en Atletas/fisiopatología , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/patología , Conmoción Encefálica/fisiopatología , Imagen de Difusión Tensora , Fútbol Americano/lesiones , Hockey/lesiones , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patologíaRESUMEN
The aim of this study was to investigate how aging affects blood flow and structure of the brain. It was hypothesized older individuals would have lower gray matter volume (GMV), resting cerebral blood flow (CBF0), and depressed responses to isometabolic and neurometabolic stimuli. In addition, increased carotid-femoral pulse-wave velocity (PWV), carotid intima-media thickness (IMT), and decreased brachial flow-mediated dilation (FMD) would be associated with lower CBF0, cerebrovascular reactivity (CVR), and GMV. Brain scans (magnetic resonance imaging) and cardiovascular examinations were conducted in young (age = 24 ± 3 yr, range = 22-28 yr; n = 13) and old (age = 71 ± 4 yr; range = 67-82 yr, n = 14) participants, and CBF0, CVR [isometabolic % blood oxygen level-dependent (BOLD) in response to a breath hold (BH)], brain activation patterns during a working memory task (neurometabolic %BOLD response to N-back trial), GMV, PWV, IMT, and FMD were measured. CBF0 and to a lesser extent CVRBH were lower in the old group (P ≤ 0.050); however, the increase in the %BOLD response to the memory task was not blunted (P ≥ 0.2867). Age-related differential activation patterns during the working memory task were characterized by disinhibition of the default mode network in the old group (P < 0.0001). Linear regression analyses revealed PWV, and IMT were negatively correlated with CBF0, CVRBH, and GMV across age groups, but within the old group alone only the relationships between PWV-CVRBH and IMT-GMV remained significant (P ≤ 0.0183). These findings suggest the impacts of age on cerebral %BOLD responses are stimulus specific, brain aging involves alterations in cerebrovascular and possibly neurocognitive control, and arterial stiffening and wall thickening may serve a role in cerebrovascular aging.NEW & NOTEWORTHY Cerebral perfusion was lower in old versus young adults. %Blood oxygen level-dependent (BOLD) responses to an isometabolic stimulus and gray matter volume were decreased in old versus young adults and associated with arterial stiffening and wall thickening. The increased %BOLD response to a neurometabolic stimulus appeared unaffected by age; however, the old group displayed disinhibition of the default mode network during the stimulus. Thus, age-related alterations in cerebral %BOLD responses were stimulus specific and related to arterial remodeling.
Asunto(s)
Grosor Intima-Media Carotídeo , Imagen por Resonancia Magnética , Adulto Joven , Humanos , Adulto , Anciano , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Envejecimiento , Circulación Cerebrovascular/fisiología , AtrofiaRESUMEN
Current psychotherapeutic treatments for OCD, while effective, have complex outcomes with mixed efficacy. Previous research has observed baseline brain activation patterns in OCD patients, elucidating some of the implications of this disorder. Observing the effects of evidence-based psychotherapeutics for OCD on brain activation (through MRI) may provide a more comprehensive outline of pathology. This systematic review and meta-analysis evaluated the effects of cognitive behavioural therapy (CBT) with exposure-response prevention (ERP) on brain activation in OCD patients. Academic databases were systematically searched, and the outcomes evaluated included changes in brain activation and symptom severity between baseline and post-treatment. Patients (n = 193) had confirmed OCD diagnosis and underwent protocolized CBT with ERP programs delivered by trained therapists. Participants in the CBT with ERP programs demonstrated significant improvements in symptom severity (Cohen's d = - 1.91). In general, CBT with ERP resulted in decreased activation post-treatment in the frontal (Cohen's d = 0.40), parietal (Cohen's d = 0.79), temporal (Cohen's d = 1.02), and occipital lobe (Cohen's d = 0.76), and cerebellum (Cohen's d = - 0.78). The findings support CBT with ERP's ability to improve brain activation abnormalities in OCD patients. By identifying regions that improved activation levels, psychotherapy programs may benefit from the addition of function-specific features that could improve treatment outcomes.
RESUMEN
BACKGROUND: The evidence on the benefits and drawbacks of involving neurosurgical residents in the care of patients who undergo neurosurgical procedures is heterogeneous. We assessed the effect of neurosurgical residency programs on the outcomes of such patients in a large single-payer public health care system. METHODS: Ten population-based cohorts of adult patients in Ontario who received neurosurgical care from 2013 to 2017 were identified on the basis of procedural codes, and the cohorts were followed in administrative health data sources. Patient outcomes by the status of the treating hospital (with or without a neurosurgical residency program) within each cohort were compared with models adjusted for a priori confounders and with adjusted multilevel models (MLMs) to also account for hospital-level factors. RESULTS: A total of 46 608 neurosurgical procedures were included. Operative time was 8%-30% longer in hospitals with neurosurgical residency programs in 9 out of 10 cohorts. Thirty-day mortality was lower in hospitals with neurosurgical residency programs for aneurysm repair (odds ratio [OR] 0.30, 95% confidence interval [CI] 0.20-0.44), cerebrospinal fluid shunting (OR 0.52, 95% CI 0.34-0.79), intracerebral hemorrhage evacuation (OR 0.66, 95% CI 0.52-0.84), and posterior lumbar decompression (OR 0.32, 95% CI 0.15-0.65) in adjusted models. The mortality rates remained significantly different only for aneurysm repair (OR 0.19, 95% CI 0.05-0.69) and cerebrospinal shunting (OR 0.42, 95% CI 0.21-0.85) in MLMs. Length of stay was mostly shorter in hospitals with neurosurgical residents, but this finding did not persist in MLMs. Thirty-day reoperation rates did not differ between hospital types in MLMs. For 30-day readmission rates, only extracerebral hematoma decompression was significant in MLMs (OR 1.41, 95% CI 1.07-1.87). CONCLUSION: Hospitals with neurosurgical residents had longer operative times with similar to better outcomes. Most, but not all, of the differences between hospitals with and without residency programs were explained by hospital-level variables rather than direct effects of residents.
Asunto(s)
Internado y Residencia , Procedimientos Neuroquirúrgicos , Humanos , Internado y Residencia/estadística & datos numéricos , Procedimientos Neuroquirúrgicos/educación , Procedimientos Neuroquirúrgicos/estadística & datos numéricos , Masculino , Femenino , Ontario , Persona de Mediana Edad , Estudios de Cohortes , Neurocirugia/educación , Adulto , Anciano , Tempo OperativoRESUMEN
Food legumes are crucial for all agriculture-related societal challenges, including climate change mitigation, agrobiodiversity conservation, sustainable agriculture, food security and human health. The transition to plant-based diets, largely based on food legumes, could present major opportunities for adaptation and mitigation, generating significant co-benefits for human health. The characterization, maintenance and exploitation of food-legume genetic resources, to date largely unexploited, form the core development of both sustainable agriculture and a healthy food system. INCREASE will implement, on chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), lentil (Lens culinaris) and lupin (Lupinus albus and L. mutabilis), a new approach to conserve, manage and characterize genetic resources. Intelligent Collections, consisting of nested core collections composed of single-seed descent-purified accessions (i.e., inbred lines), will be developed, exploiting germplasm available both from genebanks and on-farm and subjected to different levels of genotypic and phenotypic characterization. Phenotyping and gene discovery activities will meet, via a participatory approach, the needs of various actors, including breeders, scientists, farmers and agri-food and non-food industries, exploiting also the power of massive metabolomics and transcriptomics and of artificial intelligence and smart tools. Moreover, INCREASE will test, with a citizen science experiment, an innovative system of conservation and use of genetic resources based on a decentralized approach for data management and dynamic conservation. By promoting the use of food legumes, improving their quality, adaptation and yield and boosting the competitiveness of the agriculture and food sector, the INCREASE strategy will have a major impact on economy and society and represents a case study of integrative and participatory approaches towards conservation and exploitation of crop genetic resources.
Asunto(s)
Productos Agrícolas/genética , Fabaceae/genética , Banco de Semillas , Bases de Datos Genéticas , Europa (Continente) , Genotipo , Cooperación Internacional , Semillas/genéticaRESUMEN
Evolutionary dynamics at the population level play a central role in creating the diversity of life on our planet. In this study, we sought to understand the origins of such population-level variation in mating systems and defensive acylsugar chemistry in Solanum habrochaites-a wild tomato species found in diverse Andean habitats in Ecuador and Peru. Using Restriction-site-Associated-DNA-Sequencing (RAD-seq) of 50 S. habrochaites accessions, we identified eight population clusters generated via isolation and hybridization dynamics of 4-6 ancestral populations. Detailed characterization of mating systems of these clusters revealed emergence of multiple self-compatible (SC) groups from progenitor self-incompatible populations in the northern part of the species range. Emergence of these SC groups was also associated with fixation of deleterious alleles inactivating acylsugar acetylation. The Amotape-Huancabamba Zone-a geographical landmark in the Andes with high endemism and isolated microhabitats-was identified as a major driver of differentiation in the northern species range, whereas large geographical distances contributed to population structure and evolution of a novel SC group in the central and southern parts of the range, where the species was also inferred to have originated. Findings presented here highlight the role of the diverse ecogeography of Peru and Ecuador in generating population differentiation, and enhance our understanding of the microevolutionary processes that create biological diversity.
Asunto(s)
Flujo Génico , Autoincompatibilidad en las Plantas con Flores/genética , Solanum lycopersicum/genética , Solanum/genética , Acetilación , Ecuador , Solanum lycopersicum/metabolismo , Perú , Filogeografía , Autofecundación , Solanum/metabolismoRESUMEN
Plant mechanical failure (lodging) causes global yield losses of 7%-66% in cereal crops. We have previously shown that the above-ground nodal roots (brace roots) in maize are critical for anchorage. However, it is unknown how brace root phenotypes vary across genotypes and the functional consequence of this variation. This study quantifies the contribution of brace roots to anchorage, brace root traits, plant height, and root lodging susceptibility in 52 maize inbred lines. We show that the contribution of brace roots to anchorage and root lodging susceptibility varies among genotypes and this contribution can be explained by plant architectural variation. Additionally, supervised machine learning models were developed and show that multiple plant architectural phenotypes can predict the contribution of brace roots to anchorage and root lodging susceptibility. Together these data define the plant architectures that are important in lodging resistance and show that the contribution of brace roots to anchorage is a good proxy for root lodging susceptibility.
Asunto(s)
Raíces de Plantas , Zea mays , Productos Agrícolas , Genotipo , Fenotipo , Raíces de Plantas/genética , Zea mays/genéticaRESUMEN
Although microorganisms are known to dominate Earth's biospheres and drive biogeochemical cycling, little is known about the geographic distributions of microbial populations or the environmental factors that pattern those distributions. We used a global-level hierarchical sampling scheme to comprehensively characterize the evolutionary relationships and distributional limitations of the nitrogen-fixing bacterial symbionts of the crop chickpea, generating 1,027 draft whole-genome sequences at the level of bacterial populations, including 14 high-quality PacBio genomes from a phylogenetically representative subset. We find that diverse Mesorhizobium taxa perform symbiosis with chickpea and have largely overlapping global distributions. However, sampled locations cluster based on the phylogenetic diversity of Mesorhizobium populations, and diversity clusters correspond to edaphic and environmental factors, primarily soil type and latitude. Despite long-standing evolutionary divergence and geographic isolation, the diverse taxa observed to nodulate chickpea share a set of integrative conjugative elements (ICEs) that encode the major functions of the symbiosis. This symbiosis ICE takes 2 forms in the bacterial chromosome-tripartite and monopartite-with tripartite ICEs confined to a broadly distributed superspecies clade. The pairwise evolutionary relatedness of these elements is controlled as much by geographic distance as by the evolutionary relatedness of the background genome. In contrast, diversity in the broader gene content of Mesorhizobium genomes follows a tight linear relationship with core genome phylogenetic distance, with little detectable effect of geography. These results illustrate how geography and demography can operate differentially on the evolution of bacterial genomes and offer useful insights for the development of improved technologies for sustainable agriculture.
Asunto(s)
Cicer/microbiología , Transferencia de Gen Horizontal , Genoma Bacteriano , Mesorhizobium/genética , Consorcios Microbianos/genética , Evolución Biológica , Conjugación Genética , Mesorhizobium/clasificación , Metagenómica/métodos , Fijación del Nitrógeno/fisiología , Filogenia , Filogeografía , Suelo/clasificación , Microbiología del Suelo , Simbiosis/genéticaRESUMEN
Primary motor cortex (M1) almost exclusively controls the contralateral side of the body. However, M1 activity is also modulated during ipsilateral body movements. Previous work has shown that M1 activity related to the ipsilateral arm is independent of the M1 activity related to the contralateral arm. How do these patterns of activity interact when both arms move simultaneously? We explored this problem by training 2 monkeys (male, Macaca mulatta) in a postural perturbation task while recording from M1. Loads were applied to one arm at a time (unimanual) or both arms simultaneously (bimanual). We found 83% of neurons (n = 236) were responsive to both the unimanual and bimanual loads. We also observed a small reduction in activity magnitude during the bimanual loads for both limbs (25%). Across the unimanual and bimanual loads, neurons largely maintained their preferred load directions. However, there was a larger change in the preferred loads for the ipsilateral limb (â¼25%) than the contralateral limb (â¼9%). Lastly, we identified the contralateral and ipsilateral subspaces during the unimanual loads and found they captured a significant amount of the variance during the bimanual loads. However, the subspace captured more of the bimanual variance related to the contralateral limb (97%) than the ipsilateral limb (66%). Our results highlight that, even during bimanual motor actions, M1 largely retains its representations of the contralateral and ipsilateral limbs.SIGNIFICANCE STATEMENT Previous work has shown that primary motor cortex (M1) represents information related to the contralateral limb, its downstream target, but also reflects information related to the ipsilateral limb. Can M1 still represent both sources of information when performing simultaneous movements of the limbs? Here we record from M1 during a postural perturbation task. We show that activity related to the contralateral limb is maintained between unimanual and bimanual motor actions, whereas the activity related to the ipsilateral limb undergoes a small change between unimanual and bimanual motor actions. Our results indicate that two independent representations can be maintained and expressed simultaneously in M1.
Asunto(s)
Lateralidad Funcional , Mano/fisiología , Corteza Motora/fisiología , Destreza Motora , Animales , Retroalimentación Fisiológica , Macaca mulatta , MasculinoRESUMEN
Ancestral adaptations in crop wild relatives can provide a genetic reservoir for crop improvement. Here we document physiological changes to mild and severe drought stress, and the associated transcriptome dynamics in both wild and cultivated chickpea. Over 60% of transcriptional changes were related to metabolism, indicating that metabolic plasticity is a core and conserved drought response. In addition, changes in RNA processing and protein turnover were predominant in the data, suggestive of broad restructuring of the chickpea proteome in response to drought. While 12% of the drought-responsive transcripts have similar dynamics in cultivated and wild accessions, numerous transcripts had expression patterns unique to particular genotypes, or that distinguished wild from cultivated genotypes and whose divergence may be a consequence of domestication. These and other comparisons provide a transcriptional correlate of previously described species' genetic diversity, with wild accessions well differentiated from each other and from cultivars, and cultivars essentially indistinguishable at the broad transcriptome level. We identified metabolic pathways such as phenylpropanoid metabolism, and biological processes such as stomatal development, which are differentially regulated across genotypes with potential consequences on drought tolerance. These data indicate that wild Cicer reticulatum may provide both conserved and divergent mechanisms as a resource in breeding for drought tolerance in cultivated chickpea.
Asunto(s)
Cicer/genética , Deshidratación/genética , Regulación de la Expresión Génica de las Plantas , Adaptación Fisiológica/genética , Cicer/fisiología , Productos Agrícolas/genética , Sequías , Perfilación de la Expresión Génica , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Changes in resting-state functional connectivity (rs-FC) under general anesthesia have been widely studied with the goal of identifying neural signatures of consciousness. This work has commonly revealed an apparent fragmentation of whole-brain network structure during unconsciousness, which has been interpreted as reflecting a break-down in connectivity and a disruption of the brain's ability to integrate information. Here we show, by studying rs-FC under varying depths of isoflurane-induced anesthesia in nonhuman primates, that this apparent fragmentation, rather than reflecting an actual change in network structure, can be simply explained as the result of a global reduction in FC. Specifically, by comparing the actual FC data to surrogate data sets that we derived to test competing hypotheses of how FC changes as a function of dose, we found that increases in whole-brain modularity and the number of network communities - considered hallmarks of fragmentation - are artifacts of constructing FC networks by thresholding based on correlation magnitude. Taken together, our findings suggest that deepening levels of unconsciousness are instead associated with the increasingly muted expression of functional networks, an observation that constrains current interpretations as to how anesthesia-induced FC changes map onto existing neurobiological theories of consciousness.
Asunto(s)
Anestesia General/métodos , Anestésicos por Inhalación/administración & dosificación , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Animales , Encéfalo/efectos de los fármacos , Estado de Conciencia/efectos de los fármacos , Estado de Conciencia/fisiología , Femenino , Macaca fascicularis , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/efectos de los fármacosRESUMEN
The strength of the stalk rind, measured as rind penetrometer resistance (RPR), is an important contributor to stalk lodging resistance. To enhance the genetic architecture of RPR, we combined selection mapping on populations developed by 15 cycles of divergent selection for high and low RPR with time-course transcriptomic and metabolic analyses of the stalks. Divergent selection significantly altered allele frequencies of 3,656 and 3,412 single- nucleotide polymorphisms (SNPs) in the high and low RPR populations, respectively. Surprisingly, only 110 (1.56%) SNPs under selection were common in both populations, while the majority (98.4%) were unique to each population. This result indicated that high and low RPR phenotypes are produced by biologically distinct mechanisms. Remarkably, regions harboring lignin and polysaccharide genes were preferentially selected in high and low RPR populations, respectively. The preferential selection was manifested as higher lignification and increased saccharification of the high and low RPR stalks, respectively. The evolution of distinct gene classes according to the direction of selection was unexpected in the context of parallel evolution and demonstrated that selection for a trait, albeit in different directions, does not necessarily act on the same genes. Tricin, a grass-specific monolignol that initiates the incorporation of lignin in the cell walls, emerged as a key determinant of RPR. Integration of selection mapping and transcriptomic analyses with published genetic studies of RPR identified several candidate genes including ZmMYB31, ZmNAC25, ZmMADS1, ZmEXPA2, ZmIAA41 and hk5. These findings provide a foundation for an enhanced understanding of RPR and the improvement of stalk lodging resistance.
Asunto(s)
Zea mays/genética , Pared Celular/metabolismo , Evolución Molecular , Perfilación de la Expresión Génica , Frecuencia de los Genes , Metabolómica , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable , Zea mays/anatomía & histologíaRESUMEN
The main purpose of this study was to screen and select strains from seven Mesorhizobium spp. for efficient phosphate solubilizing and other plant growth-promoting traits. Mesorhizobium species were tested for their ability to dissolve inorganic phosphate sources and multiple plant growth-promoting attributes. From a total of 62 Mesorhizobium strains, 47(76%) strains formed clear zones with an average PSI of 1.9-2.7 on Pikovskaya's agar plate. The selected strains also released soluble phosphorus [125-150 P (µgml-1)] from tri-calcium phosphate and low level of phosphorous i.e., 15.4 µg/ml and 14.5 µg/ml from inorganic ferrous and aluminum phosphates, respectively, in a liquid medium after 4 days of incubation. The release of soluble P was significantly (P < 0.01) correlated with a drop in pH of the medium. Moreover, screening for multiple plant growth-promoting attributes showed that 40, 28, 26, 21, and 38% of the strains were capable of producing indole-3-acetic acid, hydrogen cyanide, siderophores, ACC deaminase, and antagonism against Fusarium oxysporum f.sp. ciceris under in vitro conditions. The Mesorhizobium strains were endowed with the presence of ACC deaminase which was rarely reported elsewhere. All taken together, the acidic soils harbor numerous and more diverse phosphate solubilizing and plant growth-promoting Mesorhizobium spp. However, greenhouse and field conditions can be further studied within the context of improving chickpea production in Ethiopia.
Asunto(s)
Cicer/microbiología , Mesorhizobium/metabolismo , Fosfatos/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Microbiología del Suelo , Antibiosis , Liasas de Carbono-Carbono/metabolismo , Cicer/crecimiento & desarrollo , Etiopía , Fusarium/fisiología , Ácidos Indolacéticos/metabolismo , Sideróforos/metabolismo , Suelo/químicaRESUMEN
BACKGROUND: Soldiers are exposed to significant repetitive head trauma, which may disrupt functional and structural brain connectivity patterns. PURPOSE/HYPOTHESIS: Integrate resting-state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI) to characterize changes in connectivity biomarkers within Canadian Special Operations Forces (CANSOF), hypothesizing that alterations in architectural organization of cortical hubs may follow chronic repetitive head trauma. METHODS: Fifteen CANSOFs with a history of chronic exposure to sub-concussive head trauma and concussive injuries (1.9 ± 2.0 concussions (range: [0-6])), as well as an equal age-matched cohort of controls (CTLs) were recruited. BOLD-based rs-fMRI was combined with DTI to reconstruct functional and structural networks using independent component analyses and probabilistic tractography. Connectivity markers were computed based on the distance between functional seeds to assess for possible differences in injury susceptibility of short- and long-range connections. RESULTS/DISCUSSION: Significant hyper- and hypo-connectivity differences in cortical connections were observed suggesting that chronic head trauma may predispose soldiers to changes in the functional organization of brain networks. Significant structural alterations in axonal fibers directly connecting disrupted functional nodes were specific to hyper-connected long-range connections, suggesting a potential relationship between axonal injury and increases in neural recruitment following repetitive head trauma from high-exposure military duties.
Asunto(s)
Conmoción Encefálica , Personal Militar , Encéfalo , Conmoción Encefálica/diagnóstico por imagen , Canadá , Imagen de Difusión Tensora , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagenRESUMEN
Traumatic brain injury (TBI) is a major public health problem. The majority of TBIs are in the form of mild TBI (also known as concussion) with sports-related concussion (SRC) receiving public attention in recent years.Here we have performed a systematic review of the literature on the use of Diffusion Tensor Imaging (DTI) on sports-related concussion and subconcussive injuries. Our review found different patterns of change in DTI parameters between concussed and subconcussed groups. The Fractional Anisotropy (FA) was either unchanged or increased for the concussion group, while the subconcussed group generally experienced a decrease in FA. A reverse pattern was observed for Mean Diffusivity (MD) - where the concussed group experienced a decrease in MD while the subconcussed group showed an increase in MD. However, in general, discrepancies were observed in the results reported in the literature - likely due to the huge variations in DTI acquisition parameters, and image processing and analysis methods used in these studies. This calls for more comprehensive and well-controlled studies in this field, including those that combine the advanced brain imaging with biomechancial modeling and kinematic sensors - to shed light on the underlying mechanisms behind the structural changes observed from the imaging studies.
Asunto(s)
Traumatismos en Atletas , Conmoción Encefálica , Anisotropía , Atletas , Traumatismos en Atletas/complicaciones , Traumatismos en Atletas/diagnóstico por imagen , Encéfalo , Conmoción Encefálica/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , HumanosRESUMEN
A defining challenge of the 21st century is meeting the nutritional demands of the growing human population, under a scenario of limited land and water resources and under the specter of climate change. The Vavilov seed bank contains numerous landraces collected nearly a hundred years ago, and thus may contain 'genetic gems' with the potential to enhance modern breeding efforts. Here, we analyze 407 landraces, sampled from major historic centers of chickpea cultivation and secondary diversification. Genome-Wide Association Studies (GWAS) conducted on both phenotypic traits and bioclimatic variables at landraces sampling sites as extended phenotypes resulted in 84 GWAS hits associated to various regions. The novel haploblock-based test identified haploblocks enriched for single nucleotide polymorphisms (SNPs) associated with phenotypes and bioclimatic variables. Subsequent bi-clustering of traits sharing enriched haploblocks underscored both non-random distribution of SNPs among several haploblocks and their association with multiple traits. We hypothesize that these clusters of pleiotropic SNPs represent co-adapted genetic complexes to a range of environmental conditions that chickpea experienced during domestication and subsequent geographic radiation. Linking genetic variation to phenotypic data and a wealth of historic information preserved in historic seed banks are the keys for genome-based and environment-informed breeding intensification.
Asunto(s)
Cicer/genética , Productos Agrícolas/genética , Fitomejoramiento , Semillas , Biodiversidad , Clima , Análisis por Conglomerados , Conservación de los Recursos Naturales , Estudios de Asociación Genética , Marcadores Genéticos , Variación Genética , Genoma de Planta , Genotipo , Geografía , Haplotipos , Historia del Siglo XX , Historia del Siglo XXI , Funciones de Verosimilitud , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Banco de Semillas/historia , Banco de Semillas/organización & administraciónRESUMEN
Redistribution of blood flow across different brain regions, arising from the vasoactive nature of hypercapnia, can introduce errors when examining cerebrovascular reactivity (CVR) response delays. In this study, we propose a novel analysis method to characterize hemodynamic delays in the blood oxygen level dependent (BOLD) response to hypercapnia, and hyperoxia, as a way to provide insight into transient differences in vascular reactivity between cortical regions, and across tissue depths. A pseudo-continuous arterial spin labeling sequence was used to acquire BOLD and cerebral blood flow simultaneously in 19 healthy adults (12 F; 20 ± 2 years) during boxcar CO2 and O2 gas inhalation paradigms. Despite showing distinct differences in hypercapnia-induced response delay times (P < 0.05; Bonferroni corrected), grey matter regions showed homogenous hemodynamic latencies (P > 0.05) once calibrated for bolus arrival time derived using non-vasoactive hyperoxic gas challenges. Longer hypercapnic temporal delays were observed as the depth of the white matter tissue increased, although no significant differences in response lag were found during hyperoxia across tissue depth, or between grey and white matter. Furthermore, calibration of hypercapnic delays using hyperoxia revealed that deeper white matter layers may be more prone to dynamic redistribution of blood flow, which introduces response lag times ranging between 1 and 3 s in healthy subjects. These findings suggest that the combination of hypercapnic and hyperoxic gas-inhalation MRI can be used to distinguish between differences in CVR that arise as a result of delayed stimulus arrival time (due to the local architecture of the cerebrovasculature), or preferential blood flow distribution. Calibrated response delays to hypercapnia provide important insights into cerebrovascular physiology, and may be used to correct response delays associated with vascular impairment.
Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Hipercapnia/metabolismo , Hiperoxia/metabolismo , Imagen por Resonancia Magnética/métodos , Calibración , Dióxido de Carbono/administración & dosificación , Dióxido de Carbono/sangre , Corteza Cerebral/irrigación sanguínea , Femenino , Hemodinámica , Humanos , Masculino , Oxígeno/administración & dosificación , Oxígeno/sangre , Marcadores de Spin , Adulto JovenRESUMEN
BACKGROUND: Accurate prediction of crop flowering time is required for reaching maximal farm efficiency. Several models developed to accomplish this goal are based on deep knowledge of plant phenology, requiring large investment for every individual crop or new variety. Mathematical modeling can be used to make better use of more shallow data and to extract information from it with higher efficiency. Cultivars of chickpea, Cicer arietanum, are currently being improved by introgressing wild C. reticulatum biodiversity with very different flowering time requirements. More understanding is required for how flowering time will depend on environmental conditions in these cultivars developed by introgression of wild alleles. RESULTS: We built a novel model for flowering time of wild chickpeas collected at 21 different sites in Turkey and grown in 4 distinct environmental conditions over several different years and seasons. We propose a general approach, in which the analytic forms of dependence of flowering time on climatic parameters, their regression coefficients, and a set of predictors are inferred automatically by stochastic minimization of the deviation of the model output from data. By using a combination of Grammatical Evolution and Differential Evolution Entirely Parallel method, we have identified a model that reflects the influence of effects of day length, temperature, humidity and precipitation and has a coefficient of determination of R2=0.97. CONCLUSIONS: We used our model to test two important hypotheses. We propose that chickpea phenology may be strongly predicted by accession geographic origin, as well as local environmental conditions at the site of growth. Indeed, the site of origin-by-growth environment interaction accounts for about 14.7% of variation in time period from sowing to flowering. Secondly, as the adaptation to specific environments is blueprinted in genomes, the effects of genes on flowering time may be conditioned on environmental factors. Genotype-by-environment interaction accounts for about 17.2% of overall variation in flowering time. We also identified several genomic markers associated with different reactions to climatic factor changes. Our methodology is general and can be further applied to extend existing crop models, especially when phenological information is limited.
Asunto(s)
Cicer/fisiología , Cambio Climático , Flores/fisiología , Interacción Gen-Ambiente , Modelos Biológicos , Adaptación Biológica , Genotipo , Geografía , Modelos Estadísticos , Fenotipo , Análisis de Regresión , TurquíaRESUMEN
With few exceptions, terrestrial plants are anchored to substrates by roots that experience bending and twisting forces resulting from gravity- and wind-induced forces. Mechanical failure occurs when these forces exceed the flexural or torsional tolerance limits of stems or roots, or when roots are dislodged from their substrate. The emphasis of this review is on the general principles of anchorage, how the mechanical failure of root anchorage can be averted, and recommendations for future research.