Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Ecol ; 32(9): 2351-2363, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36785954

RESUMEN

Wolbachia are among the most prevalent and widespread endosymbiotic bacteria on Earth. Wolbachia's success in infecting an enormous number of arthropod species is attributed to two features: the range of phenotypes they induce in their hosts, and their ability to switch between host species. Whilst much progress has been made in elucidating their induced phenotypes, our understanding of Wolbachia host-shifting is still very limited: we lack answers to even fundamental questions concerning Wolbachia's routes of transfer and the importance of factors influencing host shifts. Here, we investigate the diversity and host-shift patterns of Wolbachia in scale insects, a group of arthropods with intimate associations with other insects that make them well suited to studying host shifts. Using Illumina multitarget amplicon sequencing of Wolbachia-infected scale insects and their direct associates we determined the identity of all Wolbachia strains. We then fitted a generalized additive mixed model to our data to estimate the influence of host phylogeny and the geographical distribution on Wolbachia strain sharing among scale insect species. The model predicts no significant contribution of host geography but strong effects of host phylogeny, with high rates of Wolbachia sharing among closely related species and a sudden drop-off in sharing with increasing phylogenetic distance. We also detected the same Wolbachia strain in scale insects and several intimately associated species (ants, wasps and flies). This indicates putative host shifts and potential routes of transfers via these associates and highlights the importance of ecological connectivity in Wolbachia host-shifting.


Asunto(s)
Hemípteros , Wolbachia , Animales , Hemípteros/microbiología , Insectos/genética , Filogenia , Simbiosis/genética , Avispas/genética , Wolbachia/genética
2.
Environ Microbiol ; 24(3): 1326-1339, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34792280

RESUMEN

Wolbachia is one of the most successful endosymbiotic bacteria of arthropods. Known as the 'master of manipulation', Wolbachia can induce a wide range of phenotypes in its host that can have far-reaching ecological and evolutionary consequences and may be exploited for disease and pest control. However, our knowledge of Wolbachia's distribution and the infection rate is unevenly distributed across arthropod groups such as scale insects. We fitted a distribution of within-species prevalence of Wolbachia to our data and compared it to distributions fitted to an up-to-date dataset compiled from surveys across all arthropods. The estimated distribution parameters indicate a Wolbachia infection frequency of 43.6% (at a 10% prevalence threshold) in scale insects. Prevalence of Wolbachia in scale insects follows a distribution similar to exponential decline (most species are predicted to have low prevalence infections), in contrast to the U-shaped distribution estimated for other taxa (most species have a very low or very high prevalence). We observed no significant associations between Wolbachia infection and scale insect traits. Finally, we screened for Wolbachia in scale insect's ecological associates. We found a positive correlation between Wolbachia infection in scale insects and their ant associates, pointing to a possible route of horizontal transfer of Wolbachia.


Asunto(s)
Hormigas , Artrópodos , Hemípteros , Wolbachia , Animales , Evolución Biológica , Simbiosis , Wolbachia/genética
3.
New Phytol ; 221(4): 2308-2319, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30367483

RESUMEN

Cupressaceae subfamily Callitroideae has been an important exemplar for vicariance biogeography, but its history is more than just disjunctions resulting from continental drift. We combine fossil and molecular data to better assess its extinction and, sometimes, rediversification after past global change. Key fossils were reassessed and their phylogenetic placement for calibration was determined using trait mapping and Bayes Factors. Five vicariance hypotheses were tested by comparing molecular divergence times with the timing of tectonic rifting. The role of adaptation to fire (serotiny) in its spread across a drying Australia was tested for Callitris. Our findings suggest that three transoceanic disjunctions within the Callitroideae probably arose from long-distance dispersal. A signature of extinction, centred on the end-Eocene global climatic chilling and drying, is evident in lineages-through-time plots and in the fossil record. Callitris, the most diverse extant callitroid genus, suffered extinctions but surviving lineages adapted and re-radiated into dry, fire-prone biomes that expanded in the Neogene. Serotiny, a key adaptation to fire, likely evolved in Callitris coincident with the biome shift. Both extinction and adaptive shifts have probably played major roles in this chronicle of turnover and renewal, but better understanding of biogeographical history requires improved taxonomy of fossils.


Asunto(s)
Adaptación Fisiológica , Biodiversidad , Cupressus/fisiología , Extinción Biológica , Océanos y Mares , Dispersión de Semillas/fisiología , Incendios , Fósiles , Filogenia , Filogeografía
4.
New Phytol ; 207(2): 390-400, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25442328

RESUMEN

To understand the generation and maintenance of biodiversity hotspots, we tested three major hypotheses: rates of diversification, ecological limits to diversity, and time for species accumulation. Using dated molecular phylogenies, measures of species' range size and geographical clade overlap, niche modelling, and lineages-through-time plots of Australian Fabaceae, we compared the southwest Australia Floristic Region (SWAFR; a global biodiversity hotspot) with a latitudinally equivalent non-hotspot, southeast Australia (SEA). Ranges of species (real and simulated) were smaller in the SWAFR than in SEA. Geographical overlap of clades was significantly greater for Daviesia in the SWAFR than in SEA, but the inverse for Bossiaea. Lineage diversification rates over the past 10 Myr did not differ between the SWAFR and SEA in either genus. Interaction of multiple factors probably explains the differences in measured diversity between the two regions. Steeper climatic gradients in the SWAFR probably explain the smaller geographical ranges of both genera there. Greater geographical overlap of clades in the SWAFR, combined with a longer time in the region, can explain why Daviesia is far more species-rich there than in SEA. Our results indicate that the time for speciation and ecological limits hypotheses, in concert, can explain the differences in biodiversity.


Asunto(s)
Biodiversidad , Ecología , Fabaceae/genética , Especiación Genética , Filogenia , Australia , Evolución Biológica , Clima , Evolución Molecular , Geografía , Especificidad de la Especie
5.
Nature ; 458(7239): 754-6, 2009 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-19219025

RESUMEN

How and why organisms are distributed as they are has long intrigued evolutionary biologists. The tendency for species to retain their ancestral ecology has been demonstrated in distributions on local and regional scales, but the extent of ecological conservatism over tens of millions of years and across continents has not been assessed. Here we show that biome stasis at speciation has outweighed biome shifts by a ratio of more than 25:1, by inferring ancestral biomes for an ecologically diverse sample of more than 11,000 plant species from around the Southern Hemisphere. Stasis was also prevalent in transocean colonizations. Availability of a suitable biome could have substantially influenced which lineages establish on more than one landmass, in addition to the influence of the rarity of the dispersal events themselves. Conversely, the taxonomic composition of biomes has probably been strongly influenced by the rarity of species' transitions between biomes. This study has implications for the future because if clades have inherently limited capacity to shift biomes, then their evolutionary potential could be strongly compromised by biome contraction as climate changes.


Asunto(s)
Ecosistema , Fenómenos Fisiológicos de las Plantas , Evolución Biológica , Conservación de los Recursos Naturales , Demografía , Geografía , Filogenia , Factores de Tiempo
6.
BMC Evol Biol ; 14(1): 43, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24602227

RESUMEN

BACKGROUND: Interactions with pollinators are proposed to be one of the major drivers of diversity in angiosperms. Specialised interactions with pollinators can lead to specialised floral traits, which collectively are known as a pollination syndrome. While it is thought that specialisation to a pollinator can lead to either an increase in diversity or in some cases a dead end, it is not well understood how transitions among specialised pollinators contribute to changes in diversity. Here, we use evolutionary trait reconstruction of bee-pollination and bird-pollination syndromes in Australian egg-and-bacon peas (Mirbelieae and Bossiaeeae) to test whether transitions between pollination syndromes is correlated with changes in species diversity. We also test for directionality in transitions that might be caused by selection by pollinators or by an evolutionary ratchet in which reversals to the original pollination syndrome are not possible. RESULTS: Trait reconstructions of Australian egg-and-bacon peas suggest that bee-pollination syndrome is the ancestral form and that there has been replicated evolution of bird-pollination syndromes. Reconstructions indicate potential reversals from bird- to bee-pollination syndromes but this is not consistent with morphology. Species diversity of bird-pollination syndrome clades is lower than that of their bee-pollination syndrome sisters.We estimated the earliest transitions from bee- to bird-pollination syndrome occurred between 30.8 Ma and 10.4 Ma. Geographical structuring of pollination syndromes was found; there were fewer bird-pollination species in the Australian southeast temperate region compared to other regions of Australia. CONCLUSIONS: A consistent decrease in diversification rate coincident with switches to bird pollination might be explained if greater dispersal by bird pollinators results in higher levels of connectivity among populations and reduced chances of allopatric speciation.The earliest transitions overlap with the early diversification of Australian honeyeaters - the major lineage of pollinating birds in Australia. Our findings are consistent with the idea that environment and availability of pollinators are important in the evolution of pollination syndromes. Changes in flower traits as a result of transitions to bird-pollination syndrome might also limit reversals to a bee-pollination syndrome.


Asunto(s)
Abejas , Evolución Biológica , Aves , Fabaceae/fisiología , Flores/fisiología , Pisum sativum/fisiología , Polinización , Animales , Australia , Fabaceae/anatomía & histología , Flores/anatomía & histología
7.
BMC Evol Biol ; 14: 263, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25523814

RESUMEN

BACKGROUND: Estimating divergence times in phylogenies using a molecular clock depends on accurate modeling of nucleotide substitution rates in DNA sequences. Rate heterogeneity among lineages is likely to affect estimates, especially in lineages with long stems and short crowns ("broom" clades) and no internal calibration. We evaluate the performance of the random local clocks model (RLC) and the more routinely employed uncorrelated lognormal relaxed clock model (UCLN) in situations in which a significant rate shift occurs on the stem branch of a broom clade. We compare the results of simulations to empirical results from analyses of a real rate-heterogeneous taxon - Australian grass trees (Xanthorrhoea) - whose substitution rate is slower than in its sister groups, as determined by relative rate tests. RESULTS: In the simulated datasets, the RLC model performed much better than UCLN: RLC correctly estimated the age of the crown node of slow-rate broom clades, whereas UCLN estimates were consistently too young. Similarly, in the Xanthorrhoea dataset, UCLN returned significantly younger crown ages than RLC (mean estimates respectively 3-6 Ma versus 25-35 Ma). In both real and simulated datasets, Bayes Factor tests strongly favored the RLC model over the UCLN model. CONCLUSIONS: The choice of an unsuitable molecular clock model can strongly bias divergence time estimates. In particular, for data predicted to have more rate variation among than within clades, dating with RLC is much more likely to be accurate than with UCLN. The choice of clocks should be informed by the biology of the study group (e.g., life-form) or assessed with relative rate tests and post-hoc model comparisons.


Asunto(s)
Embryophyta/clasificación , Embryophyta/genética , Modelos Genéticos , Australia , Teorema de Bayes , Calibración , Simulación por Computador , Filogenia
8.
Mol Phylogenet Evol ; 77: 126-35, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24680740

RESUMEN

Cryptic species occur within most of the major taxonomic divisions, and a current challenge is to determine why some lineages have more cryptic species than others. It is expected that cryptic species are more common in groups where there are life histories or genetic architectures that promote speciation in the absence of apparent morphological differentiation. Chromosomal rearrangements have the potential to lead to post-zygotic isolation and might be an important factor leading to cryptic species. Here we investigate the potential role of chromosomal change in driving speciation in the karyotypically diverse scale insect genus Apiomorpha, focussing on four species placed in the same species group (the A. minor species group Gullan, 1984). Using mitochondrial and nuclear DNA sequence data, we find that Apiomorpha minor is not monophyletic and consists of at least nine cryptic species. Diploid chromosome counts range from 2n=4 to 2n=84 across the four currently recognized species, and some of the chromosomal variation exists in the absence of other genetic or host use differences, consistent with karyotypic changes being involved in lineage divergence and the generation of cryptic species.


Asunto(s)
Cromosomas de Insectos , Evolución Molecular , Hemípteros/genética , Animales , ADN/genética , Diploidia , Hemípteros/anatomía & histología , Cariotipo , Análisis de Secuencia de ADN , Factores de Tiempo
9.
Sci Rep ; 14(1): 14172, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898081

RESUMEN

Zygaenoidea is a superfamily of lepidopterans containing many venomous species, including the Limacodidae (nettle caterpillars) and Megalopygidae (asp caterpillars). Venom proteomes have been recently documented for several species from each of these families, but further data are required to understand the evolution of venom in Zygaenoidea. In this study, we examined the 'electric' caterpillar from North-Eastern Australia, a limacodid caterpillar densely covered in venomous spines. We used DNA barcoding to identify this caterpillar as the larva of the moth Comana monomorpha (Turner, 1904). We report the clinical symptoms of C. monomorpha envenomation, which include acute pain, and erythema and oedema lasting for more than a week. Combining transcriptomics of venom spines with proteomics of venom harvested from the spine tips revealed a venom markedly different in composition from previously examined limacodid venoms that are rich in peptides. In contrast, the venom of C. monomorpha is rich in aerolysin-like proteins similar to those found in venoms of asp caterpillars (Megalopygidae). Consistent with this composition, the venom potently permeabilises sensory neurons and human neuroblastoma cells. This study highlights the diversity of venom composition in Limacodidae.


Asunto(s)
Filogenia , Animales , Australia , Larva , Proteómica/métodos , Venenos de Artrópodos/genética , Venenos de Artrópodos/metabolismo , Mariposas Nocturnas/genética , Permeabilidad de la Membrana Celular , Humanos , Mordeduras y Picaduras , Proteoma
10.
Mol Phylogenet Evol ; 66(3): 941-52, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23219707

RESUMEN

Changes in geology, sea-level and climate are hypothesised to have been major driving processes of evolutionary diversification (speciation and extinction) in the Australo-Papuan region. Here we use complete species-level sampling and multilocus (one mitochondrial gene, five nuclear loci) coalescent analyses to estimate evolutionary relationships and test hypotheses about the role of changes in climate and landscape in the diversification of the Australo-Papuan butcherbirds and allies (Cracticinae: Cracticus, Strepera, Peltops). Multilocus species trees supported the current classification of the morphologically, ecologically and behaviourally divergent Australian Magpie (Cracticus tibicen (previously Gymnorhina tibicen)) as a member of an expanded genus Cracticus, which includes seven other species with 'butcherbird' morphology and behaviour. Non-monophyly of currently recognised species within Peltops and the white-throated butcherbird species-group (C.argenteus, C.mentalis, C. torquatus) at both mtDNA and nuclear loci suggest that a comprehensive taxonomic revision is warranted for both of these groups. The time-calibrated multilocus species tree revealed an early divergence between the New Guinean rainforest-restricted Peltops lineage and the largely open-habitat inhabiting Cracticus (butcherbirds and magpies) plus Strepera (currawongs) lineage around 17-28Ma, as well as a relatively recent radiation of lineages within Cracticus over the past 8Ma. Overall, patterns and timings of speciation were consistent with the hypothesis that both the expansion of open sclerophyllous woodlands 25-30Ma and the formation of extensive grassland-dominated woodlands 6-8Ma allowed the radiation of lineages adapted to open woodland habitats.


Asunto(s)
Biodiversidad , Ecosistema , Evolución Molecular , Passeriformes/genética , Filogenia , Animales , Australia , Secuencia de Bases , Teorema de Bayes , ADN Mitocondrial/genética , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Papúa Nueva Guinea , Passeriformes/clasificación , Análisis de Secuencia de ADN
11.
J Econ Entomol ; 106(6): 2391-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24498739

RESUMEN

We provide the first report of Matsucoccus macrocicatrices Richards (Hemiptera: Matsucoccidae) feeding and reproducing on eastern white pine, Pinus strobus L., in the southeastern United States. Until now, M. macrocicatrices had been reported only from the Canadian Atlantic Maritimes, New Hampshire, and Massachusetts. Entomological holdings of 27 major museums in eastern North America have no historical records for M. macrocicatrices from the southeastern region. However, our field surveys and molecular analyses (DNA barcoding) have resulted in the collection and positive identification of M. macrocicatrices in Georgia, North Carolina, South Carolina, Tennessee, Virginia, and West Virginia In addition to the new geographic range, M. macrocicatrices is also being associated with dieback and mortality of all diameter classes of P. strobus leading to concern about a potential shift from its historically nonpestiferous presence on the host tree. On P. strobus, M. macrocicatrices was found embedded in cankers or present on top of the bark with necrotic tissue under their feeding area, indicating that they may be creating wounds for opportunistic pathogenic fungi to infest. Further, we found M. macrocicatrices living outside of the epiphytic mats of its symbiotic fungus, Septobasidium pinicola Snell. This study shows that M. macrocicatrices is now widespread in the southeastern United States, with implications for the future survival and regeneration of P. strobus in eastern North America.


Asunto(s)
Hongos/fisiología , Hemípteros/fisiología , Pinus/microbiología , Pinus/fisiología , Animales , Región de los Apalaches , Recuento de Colonia Microbiana , Cadena Alimentaria , Agricultura Forestal , Hongos/clasificación , Genes de Insecto , Geografía , Hemípteros/clasificación , Hemípteros/genética , Datos de Secuencia Molecular , Pinus/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , ARN Ribosómico 28S/genética , ARN Ribosómico 28S/metabolismo , Sudeste de Estados Unidos , Simbiosis
12.
Mycobiology ; 51(5): 281-287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929007

RESUMEN

The symbiotic association between fungus-gardening termites Macrotermes and its fungal symbiont has a moderate degree of specificity-although the symbiotic fungi (Termitomyces) form a monophyletic clade, there is not a one-to-one association between termite species and their fungus-garden associates. Here, we aim to determine the origin and phylogenetic relationships of Termitomyces in Oman. We used sequences of the internal transcribed spacer region (ITS) and the nuclear large subunit ribosomal RNA (LSU rRNA, 25S) gene and analyzed these with sequences of Termitomyces from other geographic areas. We find no evidence for more than a single colonization of Oman by Termitomyces. Unexpectedly, we find Termitomyces in Oman is most closely related to the symbiont of M. subhyalinus in West Africa rather than to those of geographically closer populations in East Africa.

13.
Genetics ; 224(3)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37183508

RESUMEN

Haplodiploidy and paternal genome elimination (PGE) are examples of asymmetric inheritance, where males transmit only maternally inherited chromosomes to their offspring. Under haplodiploidy, this results from males being haploid, whereas under PGE, males inherit but subsequently exclude paternally inherited chromosomes from sperm. Their evolution involves changes in the mechanisms of meiosis and sex determination and sometimes also dosage compensation. As a result, these systems are thought to be an evolutionary trap, meaning that once asymmetric chromosome transmission evolves, it is difficult to transition back to typical Mendelian transmission. We assess whether there is evidence for this idea in the scale insect family Eriococcidae, a lineage with PGE and the only clade with a suggestion that asymmetric inheritance has transitioned back to Mendelian inheritance. We conduct a cytological survey of 13 eriococcid species, and a cytological, genetic, and gene expression analysis of species in the genus Cystococcus, to investigate whether there is evidence for species in this family evolving Mendelian chromosome transmission. Although we find that all species we examined exhibit PGE, the mechanism is extremely variable within Eriococcidae. Within Cystococcus, in fact, we uncover a previously undiscovered type of PGE in scale insects that acts exclusively in meiosis, where paternally inherited chromosomes in males are present, uncondensed, and expressed in somatic cells but eliminated prior to meiosis. Broadly, we fail to find evidence for a reversion from PGE to Mendelian inheritance in Eriococcidae, supporting the idea that asymmetric inheritance systems such as PGE may be an evolutionary trap.


Asunto(s)
Hemípteros , Animales , Masculino , Semen , Patrón de Herencia , Diploidia , Cromosomas
14.
Am Nat ; 180(4): 438-49, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22976008

RESUMEN

Imbalances in phylogenetic diversity could be the result of variable diversification rates, differing limits on diversity, or a combination of the two. We propose an approach to distinguish between rates and limits as the primary cause of phylogenetic imbalance, using parasitic plants as a model. With sister-taxon comparisons, we show that parasitic plant lineages are typically much less diverse than their autotrophic sisters. We then use age estimates for taxa used in the sister-taxon comparisons to test for correlations between clade age and clade diversity. We find that parasitic plant diversity is not significantly correlated with the age of the lineage, whereas there is a strong positive correlation between the age and diversity of nonparasitic sister lineages. The Ericaceae sister pair Monotropoideae (parasitic) and Arbutoideae (autotrophic) is sufficiently well sampled at the species level to allow more parametric comparisons of diversification patterns. Model fitting for this group supports ecological limitation in Monotropoideae and unconstrained diversification in Arbutoideae. Thus, differences in diversity between parasitic plants and their autotrophic sisters might be caused by a combination of ecological limitation and exponential diversification. A combination of sister-taxon comparisons of diversity and age, coupled with model fitting of well-sampled phylogenies of focal taxa, provides a powerful test of likely causes of asymmetry in the diversity of lineages.


Asunto(s)
Biodiversidad , Ericaceae/fisiología , Modelos Biológicos , Filogenia
15.
New Phytol ; 196(3): 681-694, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22943495

RESUMEN

Phylogenetic niche conservatism (PNC) is the tendency of lineages to retain their niche-related traits through speciation events. A recent surge in the availability of well-sampled molecular phylogenies has stimulated phylogenetic approaches to understanding ecological processes at large geographical scales and through macroevolutionary time. We stress that PNC is a pattern, not a process, and is found only in some traits and some lineages. At the simplest level, a pattern of PNC is an inevitable consequence of evolution - descent with modification and divergence of lineages - but several intrinsic causes, including physicochemical, developmental and genetic constraints, can lead directly to a marked pattern of PNC. A pattern of PNC can also be caused indirectly, as a by-product of other causes, such as extinction, dispersal limitation, competition and predation. Recognition of patterns of PNC can contribute to understanding macroevolutionary processes: for example, release from constraint in traits has been hypothesized to trigger adaptive radiations such as that of the angiosperms. Given the multiple causes of patterns of PNC, tests should address explicit questions about hypothesized processes. We conclude that PNC is a scientifically useful concept with applications to the practice of ecological research.


Asunto(s)
Ecosistema , Evolución Molecular , Filogenia , Adaptación Fisiológica , Flujo Genético , Especiación Genética , Variación Genética , Genotipo , Patrón de Herencia , Magnoliopsida/clasificación , Magnoliopsida/genética , Magnoliopsida/fisiología , Modelos Biológicos , Fenotipo , Fotosíntesis , Selección Genética
16.
New Phytol ; 192(4): 997-1009, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21895664

RESUMEN

We test the widely held notion that living gymnosperms are 'ancient' and 'living fossils' by comparing them with their sister group, the angiosperms. This perception derives partly from the lack of gross morphological differences between some Mesozoic gymnosperm fossils and their living relatives (e.g. Ginkgo, cycads and dawn redwood), suggesting that the rate of evolution of gymnosperms has been slow. We estimated the ages and diversification rates of gymnosperm lineages using Bayesian relaxed molecular clock dating calibrated with 21 fossils, based on the phylogenetic analysis of alignments of matK chloroplast DNA (cpDNA) and 26S nuclear ribosomal DNA (nrDNA) sequences, and compared these with published estimates for angiosperms. Gymnosperm crown groups of Cenozoic age are significantly younger than their angiosperm counterparts (median age: 32 Ma vs 50 Ma) and have long unbranched stems, indicating major extinctions in the Cenozoic, in contrast with angiosperms. Surviving gymnosperm genera have diversified more slowly than angiosperms during the Neogene as a result of their higher extinction rate. Compared with angiosperms, living gymnosperm groups are not ancient. The fossil record also indicates that gymnosperms suffered major extinctions when climate changed in the Oligocene and Miocene. Extant gymnosperm groups occupy diverse habitats and some probably survived after making adaptive shifts.


Asunto(s)
Biodiversidad , Cycadopsida/fisiología , Extinción Biológica , Magnoliopsida/fisiología , Calibración , Cycadopsida/genética , Especiación Genética , Magnoliopsida/genética , Nucleótidos/genética , Filogenia , Tallos de la Planta/crecimiento & desarrollo , Factores de Tiempo
17.
Mol Ecol ; 20(23): 5042-59, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22060632

RESUMEN

Changes in climate and sea level are hypothesized to have promoted the diversification of biota in monsoonal Australia and New Guinea by causing repeated range disjunctions and restricting gene flow between isolated populations. Using a multilocus (one mtDNA locus, five nuclear introns) phylogeographic approach, we test whether populations of the mangrove and rainforest restricted Black Butcherbird (Cracticus quoyi) have diverged across several geographic barriers defined a priori for this region. Phylogeographic structure and estimates of divergence times revealed Plio-Pleistocene divergences and long-term restricted gene flow of populations on either side of four major geographic barriers between and within Australia and New Guinea. Overall, our data are consistent with the hypothesis that mesic-adapted species did not disperse across the open dry woodlands and grasslands that dominated the transient palaeo-landbridges during the Plio-Pleistocene despite the presence of mangrove forests that might have acted as dispersal corridors for mesic-adapted species. Our study offers one of the first multilocus perspectives on the impact of changes in climate and sea level on the population history of widespread species with disjunct ranges in Australia and New Guinea.


Asunto(s)
Ecosistema , Genética de Población , Passeriformes/genética , Filogeografía , Animales , Australia , Teorema de Bayes , ADN Mitocondrial/genética , Femenino , Flujo Génico , Haplotipos , Funciones de Verosimilitud , Masculino , Modelos Genéticos , Nueva Guinea , Passeriformes/anatomía & histología , Filogenia , Aislamiento Reproductivo , Análisis de Secuencia de ADN
18.
BMC Evol Biol ; 10: 257, 2010 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-20735853

RESUMEN

BACKGROUND: The tree of life is significantly asymmetrical - a result of differential speciation and extinction - but general causes of such asymmetry are unclear. Differences in niche partitioning are thought to be one possible general explanation. Ecological specialization might lead to increases in diversification rate or, alternatively, specialization might limit the evolutionary potential of specialist lineages and increase their extinction risk. Here we compare the diversification rates of gall-inducing and non-galling insect lineages. Compared with other insect herbivores feeding on the same host plant, gall-inducing insects feed on plant tissue that is more nutritious and less defended, and they do so in a favorable microhabitat that may also provide some protection from natural enemies. We use sister-taxon comparisons to test whether gall-inducing lineages are more host-specific than non-galling lineages, and more or less diverse than non-gallers. We evaluate the significance of diversity bipartitions under Equal Rates Markov models, and use maximum likelihood model-fitting to test for shifts in diversification rates. RESULTS: We find that, although gall-inducing insect groups are more host-specific than their non-galling relatives, there is no general significant increase in diversification rate in gallers. However, gallers are found at both extremes - two gall-inducing lineages are exceptionally diverse (Euurina sawflies on Salicaceae and Apiomorpha scale insects on Eucalytpus), and one gall-inducing lineage is exceptionally species-poor (Maskellia armored scales on Eucalyptus). CONCLUSIONS: The effect of ecological specialization on diversification rates is complex in the case of gall-inducing insects, but host range may be an important factor. When a gall-inducing lineage has a host range approximate to that of its non-galling sister, the gallers are more diverse. When the non-galler clade has a much wider host range than the galler, the non-galler is also much more diverse. There are also lineage-specific effects, with gallers on the same host group exhibiting very different diversities. No single general model explains the observed pattern.


Asunto(s)
Evolución Biológica , Insectos/clasificación , Insectos/fisiología , Animales , Ecología , Especificidad del Huésped , Interacciones Huésped-Parásitos , Filogenia , Árboles/parasitología
19.
Mol Phylogenet Evol ; 54(2): 512-23, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19766198

RESUMEN

Eighteen of the 34 species of the fan palm genus Livistona (Arecaceae) are restricted to Australia and southern New Guinea, east of Wallace's Line, an ancient biogeographic boundary between the former supercontinents Laurasia and Gondwana. The remaining species extend from SE Asia to Africa, west of Wallace's Line. Competing hypotheses contend that Livistona is (a) ancient, its current distribution a relict of the supercontinents, or (b) a Miocene immigrant from the north into Australia as it drifted towards Asia. We have tested these hypotheses using Bayesian and penalized likelihood molecular dating based on 4Kb of nuclear and chloroplast DNA sequences with multiple fossil calibration points. Ancestral areas and biomes were reconstructed using parsimony and maximum likelihood. We found strong support for the second hypothesis, that a single Livistona ancestor colonized Australia from the north about 10-17Ma. Spread and diversification of the genus within Australia was likely favoured by a transition from the aseasonal wet to monsoonal biome, to which it could have been preadapted by fire-tolerance.


Asunto(s)
Arecaceae/genética , Evolución Molecular , Filogenia , Arecaceae/clasificación , Australia , Teorema de Bayes , Núcleo Celular/genética , ADN de Cloroplastos/genética , ADN de Plantas/genética , Ecosistema , Fósiles , Geografía , Haplotipos , Funciones de Verosimilitud , Análisis de Secuencia de ADN
20.
Bioessays ; 30(9): 854-67, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18693264

RESUMEN

Phylogenies are increasingly prominent across all of biology, especially as DNA sequencing makes more and more trees available. However, their utility is compromised by widespread misconceptions about what phylogenies can tell us, and improved "tree thinking" is crucial. The most-serious problem comes from reading trees as ladders from "left to right"--many biologists assume that species-poor lineages that appear "early branching" or "basal" are ancestral--we call this the "primitive lineage fallacy". This mistake causes misleading inferences about changes in individual characteristics and leads to misrepresentation of the evolutionary process. The problem can be rectified by considering that modern phylogenies of present-day species and genes show relationships among evolutionary cousins. Emphasizing that these are extant entities in the 21(st) century will help correct inferences about ancestral characteristics, and will enable us to leave behind 19(th) century notions about the ladder of progress driving evolution.


Asunto(s)
Evolución Biológica , Especiación Genética , Modelos Genéticos , Filogenia , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA