Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Curr Biol ; 4(3): 203-14, 1994 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-7922325

RESUMEN

BACKGROUND: As phosphoinositides can serve as signalling molecules within cells, the enzymes responsible for their synthesis and cleavage are likely to be involved in the transduction of signals from the cell surface through the cytoplasm. The precise role of the phosphoinositide 3-kinase that has been cloned from mammalian cells is not known, but it has been implicated in receptor-stimulated mitogenesis, glucose uptake and membrane ruffling. The enzyme can use phosphatidylinositol (PtdIns), PtdIns 4-phosphate and PtdIns (4,5)-bisphosphate as substrates in vitro, but it seems to phosphorylate PtdIns (4,5)-bisphosphate preferentially in vivo. The VPS34 gene product of yeast, by contrast, is a phosphoinositide 3-kinase homologue implicated in vacuolar protein sorting that apparently utilizes only PtdIns as a substrate. The significance of this difference in lipid-substrate preference and its relationship to the functions of the two phosphoinositide kinases is unknown. RESULTS: We have characterized a distinct PtdIns-specific phosphoinositide 3-kinase activity in mammalian cells. Unlike the previously identified, broad-specificity mammalian phosphoinositide kinase, this enzyme is resistant to the drug wortmannin and uses only PtdIns as a substrate in vitro; it therefore has the capacity to generate PtdIns 3-phosphate specifically. The newly characterized enzyme, which was purified by chromatography from cytosol, has biochemical and pharmacological characteristics distinct from those of the broad-specificity enzyme. CONCLUSIONS: The enzyme we have characterized may serve to generate PtdIns 3-phosphate for fundamentally different roles in the cell from those of PtdIns (3,4)-bisphosphate and/or PtdIns (3,4,5)-trisphosphate. Furthermore, the functions of the VSP34 gene product, which may not be relevant to the broad-specificity mammalian phosphoinositide 3-kinase, may be related to those of the enzyme we describe.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Secuencia de Aminoácidos , Animales , Bovinos , Línea Celular , Proteínas Fúngicas/metabolismo , Cinética , Datos de Secuencia Molecular , Oligopéptidos/química , Oligopéptidos/farmacología , Fosfatidilinositol 3-Quinasas , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/aislamiento & purificación , Pruebas de Precipitina , Receptores de Superficie Celular/metabolismo , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
2.
Curr Biol ; 5(4): 393-403, 1995 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-7627555

RESUMEN

BACKGROUND: Phosphoinositide 3-kinases (PI 3-kinases) are thought to play an important role in coordinating the responses elicited by a variety of growth factors, oncogene products and inflammatory stimuli. These responses include activation of membrane ruffling, chemotaxis, glucose transport, superoxide production, neurite outgrowth and pp70 S6 kinase. Some of these responses are also known to be regulated by Rac, a small GTP-binding protein related to Ras. Neither the transducing elements upstream of Rac, nor those downstream of PI 3-kinase, have been defined. RESULTS: We show here that platelet-derived growth factor (PDGF) can stimulate an increase in the level of GTP-Rac by at least two distinct mechanisms: firstly, by increased guanine nucleotide exchange; and secondly, by inhibition of a Rac GTPase activity. The first of these mechanisms is essential for the activation of Rac, and we show that it is dependent upon PDGR-stimulated synthesis of phosphatidylinositol (3,4,5)-trisphosphate. CONCLUSIONS: These results suggest that Rac activation lies downstream of PI 3-kinase activation on a PDGF-stimulated signalling pathway. Furthermore, as Rac has been implicated in at least two diverse cellular responses that are also though to require activation of PI 3-kinase--a reorganization of the actin cytoskeleton known as membrane ruffling and the neutrophil oxidative burst--these results suggest that Rac may be a major effector protein for the PI 3-kinase signalling pathway in many cell types.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Línea Celular , Permeabilidad de la Membrana Celular , Activación Enzimática , Guanosina Trifosfato/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas , Proteínas de Unión al GTP rac
3.
Curr Biol ; 8(22): 1219-22, 1998 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-9811604

RESUMEN

Polyphosphoinositides have many roles in cell signalling and vesicle trafficking [1-3]. Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a recently discovered PIP2 isomer, is ubiquitous in eukaryotic cells and rapidly accumulates in hyperosmotically stressed yeast. PI(3,5)P2 is synthesised from PI(3)P in both yeast and mammalian cells [4,5]. A search of the Saccharomyces cerevisiae genome database identified FAB1, a gene encoding a PIP kinase homologue and potential PI(3)P 5-kinase. Fab1p shows PI(3)P 5-kinase activity both in vivo and in vitro. A yeast strain in which FAB1 had been deleted was unable to synthesise PI(3,5)P2, either in the presence or absence of osmotic shock. A loss of PI(3,5)P2 was observed also in a temperature-sensitive FAB1 strain at the non-permissive temperature. A recombinant glutathione-S-transferase (GST)-Fab1p fusion protein was shown to have selective PI(3)P 5-kinase activity in vitro. Thus, we have demonstrated that Fab1p is a PI(3)P-specific 5-kinase and represents a third class of PIP kinase activity, which we have termed type III. Deletion of the FAB1 gene produces a loss of vacuolar morphology [6]; it is therefore concluded that PI(3,5)P2, the lipid product of Fab1p, is required for normal vacuolar function.


Asunto(s)
Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Proteínas de Saccharomyces cerevisiae , Mutagénesis , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Saccharomyces cerevisiae , Especificidad por Sustrato , Vacuolas
4.
FEBS Lett ; 392(1): 66-70, 1996 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-8769317

RESUMEN

ATP and insulin stimulate increases in phosphatidylinositol (3,4,5)-trisphosphate levels in myeloid-derived U937 cells. Quantification of FITC-phalloidin binding by fluorescence-activated cell sorting reveals that both ATP and insulin stimulate actin polymerization with distinctive kinetics in U937 cells. The response to ATP is rapid and dose-dependent with an EC50 of 200 nM, and is abolished by pre-incubation with the Ca2+ chelator BAPTA-AM. At 800 nM concentration, wortmannin, a potent inhibitor of phosphoinositide 3-kinase (PI3K), blocks the late, but not the early phase of actin polymerization stimulated by 100 nM ATP. Responses elicited by 10 micrograms/ml insulin are slower, smaller and more transient than responses to ATP, and are inhibited by preincubation with 100 nM wortmannin. Actin polymerization can also be stimulated by thapsigargin, but not by phorbol ester, providing further evidence for a role for Ca2+ in actin polymerization. These data implicate distinct Ca2+ and PI3K-mediated pathways in the regulation of actin polymerization.


Asunto(s)
Actinas/metabolismo , Adenosina Trifosfato/farmacología , Androstadienos/farmacología , Antagonistas de Insulina/farmacología , Insulina/farmacología , Actinas/efectos de los fármacos , Adenosina Trifosfato/antagonistas & inhibidores , Biopolímeros , Quelantes/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Humanos , Mitógenos/farmacología , Células Tumorales Cultivadas , Wortmanina
5.
Biochem J ; 350 Pt 2: 337-52, 2000 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10947947

RESUMEN

Advances in our understanding of the roles of phosphatidylinositol phosphates in controlling cellular functions such as endocytosis, exocytosis and the actin cytoskeleton have included new insights into the phosphatases that are responsible for the interconversion of these lipids. One of these is an entirely novel class of phosphatase domain found in a number of well characterized proteins. Proteins containing this Sac phosphatase domain include the yeast Saccharomyces cerevisiae proteins Sac1p and Fig4p. The Sac phosphatase domain is also found within the mammalian phosphoinositide 5-phosphatase synaptojanin and the yeast synaptojanin homologues Inp51p, Inp52p and Inp53p. These proteins therefore contain both Sac phosphatase and 5-phosphatase domains. This review describes the Sac phosphatase domain-containing proteins and their actions, with particular reference to the genetic and biochemical insights provided by study of the yeast Saccharomyces cerevisiae.


Asunto(s)
Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/química , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Flavoproteínas/química , Proteínas Fúngicas/química , Proteínas de la Membrana/química , Modelos Biológicos , Modelos Químicos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Fosfatos de Fosfatidilinositol/fisiología , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología , Homología de Secuencia de Aminoácido
6.
J Biol Chem ; 273(25): 15787-93, 1998 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-9624178

RESUMEN

The Saccharomyces cerevisiae protein MSS4 is essential and homologous to mammalian phosphatidylinositol-4-phosphate (PI(4)P) 5-kinases. Here, we demonstrate that MSS4 is a lipid kinase. MSS4 has dual substrate specificity in vitro, converting PI(4)P to PI(4, 5)P2 and to a lesser extent PI(3)P to PI(3,4)P2; no activity was detected with PI or PI(5)P as a substrate. Cells overexpressing MSS4 contain an elevated level specifically of PI(4,5)P2, whereas mss4 mutant cells have only approximately 10% of the normal amount of this phosphorylated phosphoinositide. Furthermore, cells lacking MSS4 are unable to form actin cables and to properly localize their actin cytoskeleton during polarized cell growth. Overexpression of RHO2, encoding a Rho-type GTPase involved in regulation of the actin cytoskeleton, restores growth and polarized distribution of actin in an mss4 mutant. These results suggest that MSS4 is the major PI(4)P 5-kinase in yeast and provide a link between phosphoinositide metabolism and organization of the actin cytoskeleton in vivo.


Asunto(s)
Actinas/fisiología , Citoesqueleto/enzimología , Proteínas Fúngicas/fisiología , Proteínas de Unión al GTP Monoméricas , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Hidroliasas/genética , Morfogénesis , Sistemas de Lectura Abierta , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Temperatura , Proteínas de Unión al GTP rho
7.
Cell ; 77(1): 83-93, 1994 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-8156600

RESUMEN

Phosphoinositide 3 kinase (PI3K) is a key signaling enzyme implicated in receptor-stimulated mitogenesis, oxidative bursting in neutrophils, membrane ruffling, and glucose uptake. A PI3K has already been purified, cloned, and shown to be regulated by receptors that act via tyrosine kinase-dependent regulatory mechanisms. We report that an immunologically, pharmacologically, and chromatographically distinct form of PI3K activity present in neutrophils and U937 cells is specifically activated by G protein beta gamma subunits. This data suggests PI3Ks conform to the paradigm set by receptor regulation of phosphoinositidase Cs: different receptor transduction systems specifically regulate dedicated isoforms of effector protein.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Neutrófilos/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Adenosina Trifosfato/metabolismo , Androstadienos/farmacología , Animales , Bovinos , Línea Celular , Activación Enzimática , Humanos , Insulina/farmacología , Ratones , Fosfatidilinositol 3-Quinasas , Fosfatidilinositoles/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Transducción de Señal , Porcinos , Wortmanina
8.
Nature ; 390(6656): 187-92, 1997 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-9367158

RESUMEN

Inositol phospholipids play multiple roles in cell signalling systems. Two widespread eukaryotic phosphoinositide-based signal transduction mechanisms, phosphoinositidase C-catalysed phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) hydrolysis and 3-OH kinase-catalysed PtdIns(4,5)P2 phosphorylation, make the second messengers inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) sn-1,2-diacylglycerol and PtdIns(3,4,5)P3. In addition, PtdIns(4,5)P2 and PtdIns3P have been implicated in exocytosis and membrane trafficking. We now show that when the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe are hyperosmotically stressed, they rapidly synthesize phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2) by a process that involves activation of a PtdIns3P 5-OH kinase. This PtdIns(3,5)P2 accumulation only occurs in yeasts that have an active vps34-encoded PtdIns 3-OH kinase, showing that this latter kinase makes the PtdIns3P needed for PtdIns(3,5)P2 synthesis and indicating that PtdIns(3,5)P2 may have a role in sorting vesicular proteins. PtdIns(3,5)P2 is also present in mammalian and plant cells: in monkey Cos-7 cells, its labelling is inversely related to the external osmotic pressure. The stimulation of a PtdIns3P 5-OH kinase-catalysed synthesis of PtdIns(3,5)P2, a molecule that might be a new type of phosphoinositide 'second messenger, thus appears to be central to a widespread and previously uncharacterized regulatory pathway.


Asunto(s)
Fosfatos de Fosfatidilinositol/biosíntesis , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Animales , Células COS , Presión Osmótica , Fosfatidilinositoles/metabolismo , Transducción de Señal
9.
J Biol Chem ; 274(48): 33905-12, 1999 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-10567352

RESUMEN

Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P(2)) is widespread in eukaryotic cells. In Saccharomyces cerevisiae, PtdIns(3,5)P(2) synthesis is catalyzed by the PtdIns3P 5-kinase Fab1p, and loss of this activity results in vacuolar morphological defects, indicating that PtdIns(3,5)P(2) is essential for vacuole homeostasis. We have therefore suggested that all Fab1p homologues may be PtdIns3P 5-kinases involved in membrane trafficking. It is unclear which phosphatidylinositol phosphate kinases (PIPkins) are responsible for PtdIns(3,5)P(2) synthesis in higher eukaryotes. To clarify how PtdIns(3,5)P(2) is synthesized in mammalian and other cells, we determined whether yeast and mammalian Fab1p homologues or mammalian Type I PIPkins (PtdIns4P 5-kinases) make PtdIns(3,5)P(2) in vivo. The recently cloned murine (p235) and Schizosaccharomyces pombe FAB1 homologues both restored basal PtdIns(3,5)P(2) synthesis in Deltafab1 cells and made PtdIns(3,5)P(2) in vitro. Only p235 corrected the growth and vacuolar defects of fab1 S. cerevisiae. A mammalian Type I PIPkin supported no PtdIns(3,5)P(2) synthesis. Thus, FAB1 and its homologues constitute a distinct class of Type III PIPkins dedicated to PtdIns(3,5)P(2) synthesis. The differential abilities of p235 and of SpFab1p to complement the phenotypic defects of Deltafab1 cells suggests that interaction(s) with other protein factors may be important for spatial and/or temporal regulation of PtdIns(3,5)P(2) synthesis. These results also suggest that p235 may regulate a step in membrane trafficking in mammalian cells that is analogous to its function in yeast.


Asunto(s)
Prueba de Complementación Genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Schizosaccharomyces/enzimología , Secuencia de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión , Ratones , Datos de Secuencia Molecular , Mutación , Fenotipo , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Fosfatos de Fosfatidilinositol/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
10.
J Biol Chem ; 275(2): 801-8, 2000 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-10625610

RESUMEN

The yeast protein Sac1p is involved in a range of cellular functions, including inositol metabolism, actin cytoskeletal organization, endoplasmic reticulum ATP transport, phosphatidylinositol-phosphatidylcholine transfer protein function, and multiple-drug sensitivity. The activity of Sac1p and its relationship to these phenotypes are unresolved. We show here that the regulation of lipid phosphoinositides in sac1 mutants is defective, resulting in altered levels of all lipid phos- phoinositides, particularly phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. We have identified two proteins with homology to Sac1p that can suppress drug sensitivity and also restore the levels of the phosphoinositides in sac1 mutants. Overexpression of truncated forms of these suppressor genes confirmed that suppression was due to phosphoinositide phosphatase activity within these proteins. We have now demonstrated this activity for Sac1p and have characterized its specificity. The in vitro phosphatase activity and specificity of Sac1p were not altered by some mutations. Indeed, in vivo mutant Sac1p phosphatase activity also appeared unchanged under conditions in which cells were drug-resistant. However, under different growth conditions, both drug sensitivity and the phosphatase defect were manifest. It is concluded that SAC1 encodes a novel lipid phosphoinositide phosphatase in which specific mutations can cause the sac1 phenotypes by altering the in vivo regulation of the protein rather than by destroying phosphatase activity.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Animales , Resistencia a Múltiples Medicamentos/genética , Proteínas Fúngicas/química , Regulación Enzimológica de la Expresión Génica , Humanos , Inositol Polifosfato 5-Fosfatasas , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Sistemas de Lectura Abierta , Fosfatidilinositoles/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA