Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(W1): W671-W678, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34009334

RESUMEN

Vaccination is one of the most significant inventions in medicine. Reverse vaccinology (RV) is a state-of-the-art technique to predict vaccine candidates from pathogen's genome(s). To promote vaccine development, we updated Vaxign2, the first web-based vaccine design program using reverse vaccinology with machine learning. Vaxign2 is a comprehensive web server for rational vaccine design, consisting of predictive and computational workflow components. The predictive part includes the original Vaxign filtering-based method and a new machine learning-based method, Vaxign-ML. The benchmarking results using a validation dataset showed that Vaxign-ML had superior prediction performance compared to other RV tools. Besides the prediction component, Vaxign2 implemented various post-prediction analyses to significantly enhance users' capability to refine the prediction results based on different vaccine design rationales and considerably reduce user time to analyze the Vaxign/Vaxign-ML prediction results. Users provide proteome sequences as input data, select candidates based on Vaxign outputs and Vaxign-ML scores, and perform post-prediction analysis. Vaxign2 also includes precomputed results from approximately 1 million proteins in 398 proteomes of 36 pathogens. As a demonstration, Vaxign2 was used to effectively analyse SARS-CoV-2, the coronavirus causing COVID-19. The comprehensive framework of Vaxign2 can support better and more rational vaccine design. Vaxign2 is publicly accessible at http://www.violinet.org/vaxign2.


Asunto(s)
Diseño de Fármacos , Internet , Aprendizaje Automático , Programas Informáticos , Vacunas , Vacunología/métodos , Antígenos Virales/química , Antígenos Virales/inmunología , COVID-19/virología , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/inmunología , Epítopos/química , Epítopos/inmunología , Humanos , Proteoma , SARS-CoV-2/química , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas/química , Vacunas/inmunología , Flujo de Trabajo
2.
Front Immunol ; 14: 1141030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180100

RESUMEN

Host responses to vaccines are complex but important to investigate. To facilitate the study, we have developed a tool called Vaccine Induced Gene Expression Analysis Tool (VIGET), with the aim to provide an interactive online tool for users to efficiently and robustly analyze the host immune response gene expression data collected in the ImmPort/GEO databases. VIGET allows users to select vaccines, choose ImmPort studies, set up analysis models by choosing confounding variables and two groups of samples having different vaccination times, and then perform differential expression analysis to select genes for pathway enrichment analysis and functional interaction network construction using the Reactome's web services. VIGET provides features for users to compare results from two analyses, facilitating comparative response analysis across different demographic groups. VIGET uses the Vaccine Ontology (VO) to classify various types of vaccines such as live or inactivated flu vaccines, yellow fever vaccines, etc. To showcase the utilities of VIGET, we conducted a longitudinal analysis of immune responses to yellow fever vaccines and found an intriguing complex activity response pattern of pathways in the immune system annotated in Reactome, demonstrating that VIGET is a valuable web portal that supports effective vaccine response studies using Reactome pathways and ImmPort data.


Asunto(s)
Vacuna contra la Fiebre Amarilla , Fiebre Amarilla , Humanos , Fiebre Amarilla/prevención & control , Vacunación , Vacunas de Productos Inactivados , Perfilación de la Expresión Génica
3.
Vaccine X ; : 100139, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34981039

RESUMEN

The development of SARS-CoV-2 vaccines during the COVID-19 pandemic has prompted the emergence of COVID-19 vaccine data. Timely access to COVID-19 vaccine information is crucial to researchers and public. To support more comprehensive annotation, integration, and analysis of COVID-19 vaccine information, we have developed Cov19VaxKB, a knowledge-focused COVID-19 vaccine database (http://www.violinet.org/cov19vaxkb/). Cov19VaxKB features comprehensive lists of COVID-19 vaccines, vaccine formulations, clinical trials, publications, news articles, and vaccine adverse event case reports. A web-based query interface enables comparison of product information and host responses among various vaccines. The knowledge base also includes a vaccine design tool for predicting vaccine targets and a statistical analysis tool that identifies enriched adverse events for FDA-authorized COVID-19 vaccines based on VAERS case report data. To support data exchange, Cov19VaxKB is synchronized with Vaccine Ontology and the Vaccine Investigation and Online Information Network (VIOLIN) database. The data integration and analytical features of Cov19VaxKB can facilitate vaccine research and development while also serving as a useful reference for the public.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA