Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Membr Biol ; 252(2-3): 159-172, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30746562

RESUMEN

The fidelity of cAMP in controlling numerous cellular functions rests crucially on the precise organization of cAMP microdomains that are sustained by the scaffolding properties of adenylyl cyclase. Earlier studies suggested that AC8 enriches in lipid rafts where it interacts with cytoskeletal elements. However, these are not stable structures and little is known about the dynamics of AC8 secretion and its interactions. The present study addresses the role of the cytoskeleton in maintaining the AC8 microenvironment, particularly in the context of the trafficking route of AC8 and its interaction with caveolin1. Here, biochemical and live-cell imaging approaches expose a complex, dynamic interaction between AC8 and caveolin1 that affects AC8 processing, targeting and responsiveness in plasma membrane lipid rafts. Site-directed mutagenesis and pharmacological approaches reveal that AC8 is processed with complex N-glycans and associates with lipid rafts en route to the plasma membrane. A dynamic picture emerges of the trafficking and interactions of AC8 while travelling to the plasma membrane, which are key to the organization of the AC8 microdomain.


Asunto(s)
Adenilil Ciclasas/metabolismo , Caveolina 1/metabolismo , AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Microdominios de Membrana/metabolismo , Adenilil Ciclasas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Brefeldino A/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Caveolina 1/antagonistas & inhibidores , Caveolina 1/genética , Citoesqueleto/efectos de los fármacos , Citoesqueleto/ultraestructura , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/ultraestructura , Mutagénesis Sitio-Dirigida , Transporte de Proteínas/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tiazolidinas/farmacología , beta-Ciclodextrinas/farmacología
2.
Biochem J ; 462(2): 199-213, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25102028

RESUMEN

Recent advances in the AC (adenylate cyclase)/cAMP field reveal overarching roles for the ACs. Whereas few processes are unaffected by cAMP in eukaryotes, ranging from the rapid modulation of ion channel kinetics to the slowest developmental effects, the large number of cellular processes modulated by only three intermediaries, i.e. PKA (protein kinase A), Epacs (exchange proteins directly activated by cAMP) and CNG (cyclic nucleotide-gated) channels, poses the question of how selectivity and fine control is achieved by cAMP. One answer rests on the number of differently regulated and distinctly expressed AC species. Specific ACs are implicated in processes such as insulin secretion, immunological responses, sino-atrial node pulsatility and memory formation, and specific ACs are linked with particular diseased conditions or predispositions, such as cystic fibrosis, Type 2 diabetes and dysrhythmias. However, much of the selectivity and control exerted by cAMP lies in the sophisticated properties of individual ACs, in terms of their coincident responsiveness, dynamic protein scaffolding and organization of cellular microassemblies. The ACs appear to be the centre of highly organized microdomains, where both cAMP and Ca2+, the other major influence on ACs, change in patterns quite discrete from the broad cellular milieu. How these microdomains are organized is beginning to become clear, so that ACs may now be viewed as fundamental signalling centres, whose properties exceed their production of cAMP. In the present review, we summarize how ACs are multiply regulated and the steps that are put in place to ensure discrimination in their signalling. This includes scaffolding of targets and modulators by the ACs and assembling of signalling nexuses in discrete cellular domains. We also stress how these assemblies are cell-specific, context-specific and dynamic, and may be best addressed by targeted biosensors. These perspectives on the organization of ACs uncover new strategies for intervention in systems mediated by cAMP, which promise far more informed specificity than traditional approaches.


Asunto(s)
Adenilil Ciclasas/metabolismo , Microdominios de Membrana/metabolismo , Inhibidores de Adenilato Ciclasa , Animales , Calcio/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Transducción de Señal
3.
Biochem J ; 464(1): 73-84, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25133583

RESUMEN

SOCE (store-operated Ca2+ entry) is mediated via specific plasma membrane channels in response to ER (endoplasmic reticulum) Ca2+ store depletion. This route of Ca2+ entry is central to the dynamic interplay between Ca2+ and cAMP signalling in regulating the activity of Ca2+-sensitive adenylate cyclase isoforms (AC1, AC5, AC6 and AC8). Two proteins have been identified as key components of SOCE: STIM1 (stromal interaction molecule 1), which senses ER Ca2+ store content and translocates to the plasma membrane upon store depletion, where it then activates Orai1, the pore-forming component of the CRAC (Ca2+ release-activated Ca2+) channel. Previous studies reported that co-expression of STIM1 and Orai1 in HEK-293 (human embryonic kidney 293) cells enhances Ca2+-stimulated AC8 activity and that AC8 and Orai1 directly interact to enhance this regulation. Nonetheless, the additional involvement of TRPC (transient receptor potential canonical) channels in SOCE has also been proposed. In the present study, we evaluate the contribution of TRPC1 to SOCE-mediated regulation of Ca2+-sensitive ACs in HEK-293 cells stably expressing AC8 (HEK-AC8) and HSG (human submandibular gland) cells expressing an endogenous Ca2+-inhibited AC6. We demonstrate a role for TRPC1 as an integral component of SOCE, alongside STIM1 and Orai1, in regulating Ca2+ fluxes within AC microdomains and influencing cAMP production.


Asunto(s)
Adenilil Ciclasas/fisiología , Señalización del Calcio/fisiología , Canales Catiónicos TRPC/fisiología , Animales , Calcio/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratas , Glándula Submandibular/metabolismo
4.
EMBO J ; 29(16): 2772-87, 2010 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-20664520

RESUMEN

Biochemical studies suggest that G-protein-coupled receptors (GPCRs) achieve exquisite signalling specificity by forming selective complexes, termed signalosomes. Here, using cAMP biosensors in single cells, we uncover a pre-assembled, constitutively active GPCR signalosome, that couples the relaxin receptor, relaxin family peptide receptor 1 (RXFP1), to cAMP following receptor stimulation with sub-picomolar concentrations of peptide. The physiological effects of relaxin, a pleiotropic hormone with therapeutic potential in cancer metastasis and heart failure, are generally attributed to local production of the peptide, that occur in response to sub-micromolar concentrations. The highly sensitive signalosome identified here provides a regulatory mechanism for the extremely low levels of relaxin that circulate. The signalosome includes requisite Galpha(s), Gbetagamma and adenylyl cyclase 2 (AC2); AC2 is functionally coupled to RXFP1 through AKAP79 binding to helix 8 of the receptor; activation of AC2 is tonically opposed by protein kinase A (PKA)-activated PDE4D3, scaffolded through a beta-arrestin 2 interaction with Ser(704) of the receptor C-terminus. This elaborate, pre-assembled, ligand-independent GPCR signalosome represents a new paradigm in GPCR signalling and provides a mechanism for the distal actions of low circulating levels of relaxin.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenilil Ciclasas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/metabolismo , Relaxina/metabolismo , Transducción de Señal , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Arrestinas/metabolismo , Línea Celular , Células Cultivadas , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Humanos , Ratas , Arrestina beta 2 , beta-Arrestinas
5.
J Cell Sci ; 125(Pt 23): 5850-9, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22976297

RESUMEN

Adenylyl cyclase (AC) isoforms can participate in multimolecular signalling complexes incorporating A-kinase anchoring proteins (AKAPs). We recently identified a direct interaction between Ca(2+)-sensitive AC8 and plasma membrane-targeted AKAP79/150 (in cultured pancreatic insulin-secreting cells and hippocampal neurons), which attenuated the stimulation of AC8 by Ca(2+) entry (Willoughby et al., 2010). Here, we reveal that AKAP79 recruits cAMP-dependent protein kinase (PKA) to mediate the regulatory effects of AKAP79 on AC8 activity. Modulation by PKA is a novel means of AC8 regulation, which may modulate or apply negative feedback to the stimulation of AC8 by Ca(2+) entry. We show that the actions of PKA are not mediated indirectly via PKA-dependent activation of protein phosphatase 2A (PP2A) B56δ subunits that associate with the N-terminus of AC8. By site-directed mutagenesis we identify Ser-112 as an essential residue for direct PKA phosphorylation of AC8 (Ser-112 lies within the N-terminus of AC8, close to the site of AKAP79 association). During a series of experimentally imposed Ca(2+) oscillations, AKAP79-targeted PKA reduced the on-rate of cAMP production in wild-type but not non-phosphorylatable mutants of AC8, which suggests that the protein-protein interaction may provide a feedback mechanism to dampen the downstream consequences of AC8 activation evoked by bursts of Ca(2+) activity. This fine-tuning of Ca(2+)-dependent cAMP dynamics by targeted PKA could be highly significant for cellular events that depend on the interplay of Ca(2+) and cAMP, such as pulsatile hormone secretion and memory formation.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Adenilil Ciclasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Western Blotting , Línea Celular , Humanos , Inmunoprecipitación , Fosforilación
6.
J Cell Sci ; 125(Pt 4): 869-86, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22399809

RESUMEN

The central and pervasive influence of cAMP on cellular functions underscores the value of stringent control of the organization of adenylyl cyclases (ACs) in the plasma membrane. Biochemical data suggest that ACs reside in membrane rafts and could compartmentalize intermediary scaffolding proteins and associated regulatory elements. However, little is known about the organization or regulation of the dynamic behaviour of ACs in a cellular context. The present study examines these issues, using confocal image analysis of various AC8 constructs, combined with fluorescence recovery after photobleaching and fluorescence correlation spectroscopy. These studies reveal that AC8, through its N-terminus, enhances the cortical actin signal at the plasma membrane; an interaction that was confirmed by GST pull-down and immunoprecipitation experiments. AC8 also associates dynamically with lipid rafts; the direct association of AC8 with sterols was confirmed in Förster resonance energy transfer experiments. Disruption of the actin cytoskeleton and lipid rafts indicates that AC8 tracks along the cytoskeleton in a cholesterol-enriched domain, and the cAMP that it produces contributes to sculpting the actin cytoskeleton. Thus, an adenylyl cyclase is shown not just to act as a scaffold, but also to actively orchestrate its own micro-environment, by associating with the cytoskeleton and controlling the association by producing cAMP, to yield a highly organized signalling hub.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Adenilil Ciclasas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/metabolismo , Adenilil Ciclasas/química , Adenilil Ciclasas/genética , Transporte Biológico/efectos de los fármacos , AMP Cíclico/biosíntesis , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Recuperación de Fluorescencia tras Fotoblanqueo , Células HEK293 , Humanos , Inmunoprecipitación , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Unión Proteica , Transducción de Señal , Espectrometría de Fluorescencia
7.
Biochem J ; 455(1): 47-56, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23889134

RESUMEN

AC2 (adenylate cyclase 2) is stimulated by activation of Gq-coupled muscarinic receptors through PKC (protein kinase C) to generate localized cAMP in HEK (human embryonic kidney)-293 cells. In the present study, we utilized a sensitive live-cell imaging technique to unravel the proteins that play essential roles in a Gq-coupled muscarinic receptor-mediated cAMP signalling complex. We reveal that, upon agonist binding to the Gq-coupled muscarinic receptor, AKAP79 (A-kinase-anchoring protein 79) recruits PKC to activate AC2 to produce cAMP. The cAMP formed is degraded by PDE4 (phosphodiesterase 4) activated by an AKAP-anchored PKA (protein kinase A). Calcineurin, a phosphatase bound to AKAP79, is not involved in this regulation. Overall, a transient cAMP increase is generated from AC2 by Gq-coupled muscarinic receptor activation, subject to sophisticated regulation through AKAP79, PKC, PDE4 and PKA, which significantly enhances acetylcholine-mediated signalling.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Adenilil Ciclasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Proteína Quinasa C/metabolismo , Receptor Muscarínico M3/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Acetilcolina/metabolismo , Adenilil Ciclasas/genética , Animales , Calcineurina/genética , Calcineurina/metabolismo , Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Proteína Quinasa C/genética , Ratas , Receptor Muscarínico M3/genética , Transducción de Señal , Análisis de la Célula Individual , Transfección
8.
Anal Bioanal Chem ; 405(29): 9333-42, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24071896

RESUMEN

Calmodulin (CaM) is a highly conserved intracellular Ca(2+)-binding protein that exerts important functions in many cellular processes. Prominent examples of CaM-regulated proteins are adenylyl cyclases (ACs), which synthesize cAMP as a central second messenger. The interaction of ACs with CaM represents the link between Ca(2+)-signaling and cAMP-signaling pathways. Thereby, different AC isoforms stimulated by CaM, comprise diverse mechanisms of regulation by the Ca(2+) sensor. To extend the structural information about the detailed mechanisms underlying the regulation of AC8 by CaM, we employed an integrated approach combining chemical cross-linking and mass spectrometry with two peptides representing the CaM-binding regions of AC8. These experiments reveal that the structures of CaM/AC8 peptide complexes are similar to that of the CaM/skeletal muscle myosin light chain kinase peptide complex where CaM is collapsed around the target peptide that binds to CaM in an antiparallel orientation. Cross-linking experiments were complemented by investigating the binding of AC8 peptides to CaM thermodynamically with isothermal titration calorimetry. There were no hints on a complex, in which both AC8 peptides bind simultaneously to CaM, refining our current understanding of the interaction between CaM and AC8.


Asunto(s)
Adenilil Ciclasas/química , Calmodulina/química , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Bovinos , Unión Proteica , Estructura Terciaria de Proteína , Termodinámica
9.
Biochem J ; 447(3): 393-405, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22906005

RESUMEN

Direct phosphorylation of AC2 (adenylyl cyclase 2) by PKC (protein kinase C) affords an opportunity for AC2 to integrate signals from non-canonical pathways to produce the second messenger, cyclic AMP. The present study shows that stimulation of AC2 by pharmacological activation of PKC or muscarinic receptor activation is primarily the result of phosphorylation of Ser490 and Ser543, as opposed to the previously proposed Thr1057. A double phosphorylation-deficient mutant (S490/543A) of AC2 was insensitive to PMA (phorbol myristic acid) and CCh (carbachol) stimulation, whereas a double phosphomimetic mutant (S490/543D) mimicked the activity of PKC-activated AC2. Putative Gßγ-interacting sites are in the immediate environment of these PKC phosphorylation sites (Ser490 and Ser543) that are located within the C1b domain of AC2, suggesting a significant regulatory importance of this domain. Consequently, we examined the effect of both Gq-coupled muscarinic and Gi-coupled somatostatin receptors. Employing pharmacological and FRET (fluorescence resonance energy transfer)-based real-time single cell imaging approaches, we found that Gßγ released from the Gq-coupled muscarinic receptor or Gi-coupled somatostatin receptors exert inhibitory or stimulatory effects respectively. These results underline the sophisticated regulatory capacities of AC2, in not only being subject to regulation by PKC, but also and in an opposite manner to Gßγ subunits, depending on their source.


Asunto(s)
Adenilil Ciclasas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Receptor Muscarínico M3/metabolismo , Adenilil Ciclasas/genética , Animales , Carbacol/farmacología , AMP Cíclico/biosíntesis , Activación Enzimática , Células HEK293 , Humanos , Mutación , Fosforilación , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Ratas , Receptor Muscarínico M3/genética , Receptores de Somatostatina/metabolismo , Análisis de la Célula Individual
10.
Biochemistry ; 51(40): 7917-29, 2012 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-22971080

RESUMEN

Calmodulin (CaM), by mediating the stimulation of the activity of two adenylyl cyclases (ACs), plays a key role in integrating the cAMP and Ca(2+) signaling systems. These ACs, AC1 and AC8, by decoding discrete Ca(2+) signals can contribute to fine-tuning intracellular cAMP dynamics, particularly in neurons where they predominate. CaM comprises an α-helical linker separating two globular regions at the N-terminus and the C-terminus that each bind two Ca(2+) ions. These two lobes have differing affinities for Ca(2+), and they can interact with target proteins independently. This study explores previous indications that the two lobes of CaM can regulate AC1 and AC8 differently and thereby yield different responses to cellular transitions in [Ca(2+)](i). We first compared by glutathione S-transferase pull-down assays and offline nanoelectrospray ionization mass spectrometry the interaction of CaM and Ca(2+)-binding deficient mutants of CaM with the internal CaM binding domain (CaMBD) of AC1 and the two terminal CaMBDs of AC8. We then examined the influence of these three CaMBDs on Ca(2+) binding by native and mutated CaM in stopped-flow experiments to quantify their interactions. The three CaMBDs show quite distinct interactions with the two lobes of CaM. These findings establish the critical kinetic differences between the mechanisms of Ca(2+)-CaM activation of AC1 and AC8, which may underpin their different physiological roles.


Asunto(s)
Adenilil Ciclasas/metabolismo , Calmodulina/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Adenilil Ciclasas/efectos de los fármacos , Adenilil Ciclasas/genética , Animales , Calcio/metabolismo , Calmodulina/química , Glutatión Transferasa/metabolismo , Células HEK293 , Humanos , Mutación , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Ratas
11.
J Biol Chem ; 286(38): 32962-75, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21771783

RESUMEN

PKA anchoring proteins (AKAPs) optimize the efficiency of cAMP signaling by clustering interacting partners. Recently, AKAP79 has been reported to directly bind to adenylyl cyclase type 8 (AC8) and to regulate its responsiveness to store-operated Ca(2+) entry (SOCE). Although AKAP79 is well targeted to the plasma membrane via phospholipid associations with three N-terminal polybasic regions, recent studies suggest that AKAP79 also has the potential to be palmitoylated, which may specifically allow it to target the lipid rafts where AC8 resides and is regulated by SOCE. In this study, we have addressed the role of palmitoylation of AKAP79 using a combination of pharmacological, mutagenesis, and cell biological approaches. We reveal that AKAP79 is palmitoylated via two cysteines in its N-terminal region. This palmitoylation plays a key role in targeting the AKAP to lipid rafts in HEK-293 cells. Mutation of the two critical cysteines results in exclusion of AKAP79 from lipid rafts and alterations in its membrane diffusion behavior. This is accompanied by a loss of the ability of AKAP79 to regulate SOCE-dependent AC8 activity in intact cells and decreased PKA-dependent phosphorylation of raft proteins, including AC8. We conclude that palmitoylation plays a key role in the targeting and action of AKAP79. This novel property of AKAP79 adds an unexpected regulatory and targeting option for AKAPs, which may be exploited in the cellular context.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Adenilil Ciclasas/metabolismo , Calcio/metabolismo , Lipoilación , Microdominios de Membrana/metabolismo , Animales , Línea Celular , Centrifugación por Gradiente de Densidad , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Cisteína/metabolismo , Difusión/efectos de los fármacos , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Inositol/metabolismo , Lipoilación/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Octoxinol/farmacología , Palmitatos/farmacología , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Ratas , Receptores Adrenérgicos beta/metabolismo , Solubilidad/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Especificidad por Sustrato/efectos de los fármacos
12.
J Biol Chem ; 286(11): 9079-96, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21177871

RESUMEN

A-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3'-diamino-4,4'-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes. The molecules bind to an allosteric site of regulatory subunits of PKA identifying a hitherto unrecognized region that controls AKAP-PKA interactions. FMP-API-1 also activates PKA. The net effect of FMP-API-1 is a selective interference with compartmentalized cAMP signaling. In cardiac myocytes, FMP-API-1 reveals a novel mechanism involved in terminating ß-adrenoreceptor-induced cAMP synthesis. In addition, FMP-API-1 leads to an increase in contractility of cultured rat cardiac myocytes and intact hearts. Thus, FMP-API-1 represents not only a novel means to study compartmentalized cAMP/PKA signaling but, due to its effects on cardiac myocytes and intact hearts, provides the basis for a new concept in the treatment of chronic heart failure.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Miocitos Cardíacos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Sistemas de Mensajero Secundario/fisiología , Proteínas de Anclaje a la Quinasa A/genética , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/genética , Animales , Enfermedad Crónica , AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Masculino , Contracción Miocárdica/efectos de los fármacos , Ratas , Ratas Endogámicas WKY , Sistemas de Mensajero Secundario/efectos de los fármacos
13.
J Cell Sci ; 123(Pt 1): 107-17, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20016071

RESUMEN

Ca(2+)-sensitive adenylyl cyclases (ACs) orchestrate dynamic interplay between Ca(2+) and cAMP that is a crucial feature of cellular homeostasis. Significantly, these ACs are highly selective for capacitative Ca(2+) entry (CCE) over other modes of Ca(2+) increase. To directly address the possibility that these ACs reside in discrete Ca(2+) microdomains, we tethered a Ca(2+) sensor, GCaMP2, to the N-terminus of Ca(2+)-stimulated AC8. GCaMP2-AC8 measurements were compared with global, plasma membrane (PM)-targeted or Ca(2+)-insensitive AC2-targeted GCaMP2. In intact cells, GCaMP2-AC8 responded rapidly to CCE, but was largely unresponsive to other types of Ca(2+) rise. The global GCaMP2, PM-targeted GCaMP2 and GCaMP2-AC2 sensors reported large Ca(2+) fluxes during Ca(2+) mobilization and non-specific Ca(2+) entry, but were less responsive to CCE than GCaMP2-AC8. Our data reveal that different AC isoforms localize to distinct Ca(2+)-microdomains within the plasma membrane. AC2, which is regulated via protein kinase C, resides in a microdomain that is exposed to a range of widespread Ca(2+) signals seen throughout the cytosol. By contrast, a unique Ca(2+) microdomain surrounds AC8 that promotes selectivity for Ca(2+) signals arising from CCE, and optimizes CCE-mediated cAMP synthesis. This direct demonstration of discrete compartmentalized Ca(2+) signals associated with specific signalling proteins provides a remarkable insight into the functional organization of signalling microdomains.


Asunto(s)
Adenilil Ciclasas/metabolismo , Calcio/metabolismo , Microdominios de Membrana/metabolismo , Sondas Moleculares/metabolismo , Isoformas de Proteínas/metabolismo , Adenilil Ciclasas/genética , Señalización del Calcio , Línea Celular , AMP Cíclico/metabolismo , Citosol , Humanos , Sondas Moleculares/genética , Unión Proteica , Ingeniería de Proteínas , Isoformas de Proteínas/genética , Transporte de Proteínas/genética
14.
J Cell Sci ; 123(Pt 1): 95-106, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20016070

RESUMEN

Microdomains have been proposed to explain specificity in the myriad of possible cellular targets of cAMP. Local differences in cAMP levels can be generated by phosphodiesterases, which control the diffusion of cAMP. Here, we address the possibility that adenylyl cyclases, the source of cAMP, can be primary architects of such microdomains. Distinctly regulated adenylyl cyclases often contribute to total cAMP levels in endogenous cellular settings, making it virtually impossible to determine the contribution of a specific isoform. To investigate cAMP dynamics with high precision at the single-isoform level, we developed a targeted version of Epac2-camps, a cAMP sensor, in which the sensor was tagged to a catalytically inactive version of the Ca(2+)-stimulable adenylyl cyclase 8 (AC8). This sensor, and less stringently targeted versions of Epac2-camps, revealed opposite regulation of cAMP synthesis in response to Ca(2+) in GH(3)B(6) pituitary cells. Ca(2+) release triggered by thyrotropin-releasing hormone stimulated the minor endogenous AC8 species. cAMP levels were decreased by inhibition of AC5 and AC6, and simultaneous activation of phosphodiesterases, in different compartments of the same cell. These findings demonstrate the existence of distinct adenylyl-cyclase-centered cAMP microdomains in live cells and open the door to their molecular micro-dissection.


Asunto(s)
Adenilil Ciclasas/metabolismo , AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Sondas Moleculares/metabolismo , Isoformas de Proteínas/metabolismo , Adenilil Ciclasas/química , Adenilil Ciclasas/genética , Señalización del Calcio , Dominio Catalítico/genética , Línea Celular , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Microdominios de Membrana , Microscopía Fluorescente , Sondas Moleculares/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Adenohipófisis/citología , Ingeniería de Proteínas , Hormona Liberadora de Tirotropina/metabolismo
15.
Biochem Soc Trans ; 40(1): 179-83, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22260686

RESUMEN

The development of FRET (fluorescence resonance energy transfer)-based sensors for measuring cAMP has opened the door to sophisticated insights into single-cell cAMP dynamics. cAMP can be measured in distinct cell populations and even in distinct microdomains within cells. However, there is still only limited information on cAMP dynamics in excitable cells, particularly as a function of the activity of voltage-gated Ca2+ channels. A major reason for this is the pH shifts that can occur in excitable cells and their effects on fluorescent proteins.


Asunto(s)
AMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Sistemas de Mensajero Secundario , Animales , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/metabolismo , Análisis de la Célula Individual/métodos
16.
J Biol Chem ; 285(26): 20328-42, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20410303

RESUMEN

Protein kinase A anchoring proteins (AKAPs) provide the backbone for targeted multimolecular signaling complexes that serve to localize the activities of cAMP. Evidence is accumulating of direct associations between AKAPs and specific adenylyl cyclase (AC) isoforms to facilitate the actions of protein kinase A on cAMP production. It happens that some of the AC isoforms (AC1 and AC5/6) that bind specific AKAPs are regulated by submicromolar shifts in intracellular Ca(2+). However, whether AKAPs play a role in the control of AC activity by Ca(2+) is unknown. Using a combination of co-immunoprecipitation and high resolution live cell imaging techniques, we reveal an association of the Ca(2+)-stimulable AC8 with AKAP79/150 that limits the sensitivity of AC8 to intracellular Ca(2+) events. This functional interaction between AKAP79/150 and AC8 was observed in HEK293 cells overexpressing the two signaling molecules. Similar findings were made in pancreatic insulin-secreting cells and cultured hippocampal neurons that endogenously express AKAP79/150 and AC8, which suggests important physiological implications for this protein-protein interaction with respect to Ca(2+)-stimulated cAMP production.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Adenilil Ciclasas/metabolismo , Calcio/metabolismo , AMP Cíclico/biosíntesis , Células Secretoras de Insulina/metabolismo , Neuronas/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Adenilil Ciclasas/genética , Animales , Animales Recién Nacidos , Western Blotting , Calcio/farmacología , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Humanos , Inmunoprecipitación , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Neuronas/citología , Unión Proteica , Interferencia de ARN , Ratas , Ratas Wistar , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección
18.
Am J Physiol Lung Cell Mol Physiol ; 301(1): L117-24, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21478251

RESUMEN

Transmembrane adenylyl cyclase (AC) generates a cAMP pool within the subplasma membrane compartment that strengthens the endothelial cell barrier. This cAMP signal is steered toward effectors that promote junctional integrity and is inactivated before it accesses microtubules, where the cAMP signal causes phosphorylation of tau, leading to microtubule disassembly and barrier disruption. During infection, Pseudomonas aeruginosa uses a type III secretion system to inject a soluble AC, ExoY, into the cytosol of pulmonary microvascular endothelial cells. ExoY generates a cAMP signal that disrupts the endothelial cell barrier. We tested the hypothesis that this ExoY-dependent cAMP signal causes phosphorylation of tau, without inducing phosphorylation of membrane effectors that strengthen endothelial barrier function. To approach this hypothesis, we first discerned the membrane compartment in which endogenous transmembrane AC6 resides. AC6 was resolved in caveolin-rich lipid raft fractions with calcium channel proteins and the cell adhesion molecules N-cadherin, E-cadherin, and activated leukocyte adhesion molecule. VE-cadherin was excluded from the caveolin-rich fractions and was detected in the bulk plasma membrane fractions. The actin binding protein, filamin A, was detected in all membrane fractions. Isoproterenol activation of ACs promoted filamin phosphorylation, whereas thrombin inhibition of AC6 reduced filamin phosphorylation within the membrane fraction. In contrast, ExoY produced a cAMP signal that did not cause filamin phosphorylation yet induced tau phosphorylation. Hence, our data indicate that cAMP signals are strictly compartmentalized; whereas cAMP emanating from transmembrane ACs activates barrier-enhancing targets, such as filamin, cAMP emanating from soluble ACs activates barrier-disrupting targets, such as tau.


Asunto(s)
Adenilil Ciclasas/metabolismo , Membrana Celular/enzimología , Proteínas Contráctiles/metabolismo , Citosol/enzimología , Proteínas de Microfilamentos/metabolismo , Animales , Proteínas Bacterianas/farmacología , Canales de Calcio/metabolismo , Caveolina 1/metabolismo , Moléculas de Adhesión Celular , Compartimento Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Citosol/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Activación Enzimática/efectos de los fármacos , Filaminas , Glucosiltransferasas/farmacología , Isoproterenol/farmacología , Pulmón/irrigación sanguínea , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/enzimología , Microvasos/citología , Modelos Biológicos , Proteína ORAI1 , Fosforilación/efectos de los fármacos , Ratas , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Canales Catiónicos TRPC/metabolismo , Trombina/farmacología , Proteínas tau/metabolismo
19.
Nat Methods ; 5(1): 29-36, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18165805

RESUMEN

Spatial and temporal compartmentalization of cAMP (and its target proteins) is central to the ability of this second messenger to govern cellular activity over timescales ranging from milliseconds to several hours. Recent years have witnessed a burgeoning of methodologies that enable researchers to directly monitor rapid subcellular cAMP dynamics, which are unobtainable by traditional cAMP assays. In this review, we examine cAMP biosensors that are currently available for measuring cAMP at the single-cell level, compare their various operating principles and discuss their applications.


Asunto(s)
Bioensayo/métodos , Técnicas Biosensibles/métodos , Calcio/metabolismo , Fenómenos Fisiológicos Celulares , AMP Cíclico/metabolismo , Perfilación de la Expresión Génica/métodos , Microscopía Fluorescente/métodos
20.
Function (Oxf) ; 2(5): zqab036, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34458850

RESUMEN

To ensure specificity of response, eukaryotic cells often restrict signalling molecules to sub-cellular regions. The Ca2+ nanodomain is a spatially confined signal that arises near open Ca2+ channels. Ca2+ nanodomains near store-operated Orai1 channels stimulate the protein phosphatase calcineurin, which activates the transcription factor NFAT1, and both enzyme and target are initially attached to the plasma membrane through the scaffolding protein AKAP79. Here, we show that a cAMP signalling nexus also forms adjacent to Orai1. Protein kinase A and phosphodiesterase 4, an enzyme that rapidly breaks down cAMP, both associate with AKAP79 and realign close to Orai1 after stimulation. PCR and mass spectrometry failed to show expression of Ca2+-activated adenylyl cyclase 8 in HEK293 cells, whereas the enzyme was observed in neuronal cell lines. FRET and biochemical measurements of bulk cAMP and protein kinase A activity consistently failed to show an increase in adenylyl cyclase activity following even a large rise in cytosolic Ca2+. Furthermore, expression of AKAP79-CUTie, a cAMP FRET sensor tethered to AKAP79, did not report a rise in cAMP after stimulation, despite AKAP79 association with Orai1. Hence, HEK293 cells do not express functional active Ca2+-activated adenylyl cyclases including adenylyl cyclase 8. Our results show that two ancient second messengers are independently generated in nanodomains close to Orai1 Ca2+ channels.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Humanos , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Células HEK293 , Proteína ORAI1/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA