Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nucleic Acids Res ; 46(17): 9067-9080, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30165537

RESUMEN

Restriction Modification (RM) systems prevent the invasion of foreign genetic material into bacterial cells by restriction and protect the host's genetic material by methylation. They are therefore important in maintaining the integrity of the host genome. RM systems are currently classified into four types (I to IV) on the basis of differences in composition, target recognition, cofactors and the manner in which they cleave DNA. Comparing the structures of the different types, similarities can be observed suggesting an evolutionary link between these different types. This work describes the 'deconstruction' of a large Type I RM enzyme into forms structurally similar to smaller Type II RM enzymes in an effort to elucidate the pathway taken by Nature to form these different RM enzymes. Based upon the ability to engineer new enzymes from the Type I 'scaffold', an evolutionary pathway and the evolutionary pressures required to move along the pathway from Type I RM systems to Type II RM systems are proposed. Experiments to test the evolutionary model are discussed.


Asunto(s)
ADN Bacteriano/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Modelos Genéticos , Secuencia de Aminoácidos , Sitios de Unión , ADN Bacteriano/química , ADN Bacteriano/genética , Desoxirribonucleasas de Localización Especificada Tipo I/química , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo II/química , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Ingeniería de Proteínas , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Relación Estructura-Actividad
2.
Genes Dev ; 26(1): 92-104, 2012 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-22215814

RESUMEN

Type I DNA restriction/modification (RM) enzymes are molecular machines found in the majority of bacterial species. Their early discovery paved the way for the development of genetic engineering. They control (restrict) the influx of foreign DNA via horizontal gene transfer into the bacterium while maintaining sequence-specific methylation (modification) of host DNA. The endonuclease reaction of these enzymes on unmethylated DNA is preceded by bidirectional translocation of thousands of base pairs of DNA toward the enzyme. We present the structures of two type I RM enzymes, EcoKI and EcoR124I, derived using electron microscopy (EM), small-angle scattering (neutron and X-ray), and detailed molecular modeling. DNA binding triggers a large contraction of the open form of the enzyme to a compact form. The path followed by DNA through the complexes is revealed by using a DNA mimic anti-restriction protein. The structures reveal an evolutionary link between type I RM enzymes and type II RM enzymes.


Asunto(s)
Enzimas de Restricción del ADN/química , Enzimas de Restricción del ADN/ultraestructura , Modelos Moleculares , Desoxirribonucleasas de Localización Especificada Tipo I/química , Desoxirribonucleasas de Localización Especificada Tipo I/ultraestructura , Microscopía Electrónica , Coloración Negativa , Estructura Terciaria de Proteína
3.
Nucleic Acids Res ; 45(6): 3395-3406, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28180279

RESUMEN

Staphylococcus aureus displays a clonal population structure in which horizontal gene transfer between different lineages is extremely rare. This is due, in part, to the presence of a Type I DNA restriction-modification (RM) system given the generic name of Sau1, which maintains different patterns of methylation on specific target sequences on the genomes of different lineages. We have determined the target sequences recognized by the Sau1 Type I RM systems present in a wide range of the most prevalent S. aureus lineages and assigned the sequences recognized to particular target recognition domains within the RM enzymes. We used a range of biochemical assays on purified enzymes and single molecule real-time sequencing on genomic DNA to determine these target sequences and their patterns of methylation. Knowledge of the main target sequences for Sau1 will facilitate the synthesis of new vectors for transformation of the most prevalent lineages of this 'untransformable' bacterium.


Asunto(s)
Metilasas de Modificación del ADN/química , Metilasas de Modificación del ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/química , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Staphylococcus aureus/enzimología , Secuencia de Aminoácidos , ADN/química , ADN/metabolismo , Dominios Proteicos , Análisis de Secuencia de ADN , Staphylococcus aureus/genética , Transformación Bacteriana
4.
Nucleic Acids Res ; 44(9): 4289-303, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27095198

RESUMEN

The protein Ocr (overcome classical restriction) from bacteriophage T7 acts as a mimic of DNA and inhibits all Type I restriction/modification (RM) enzymes. Ocr is a homodimer of 116 amino acids and adopts an elongated structure that resembles the shape of a bent 24 bp DNA molecule. Each monomer includes 34 acidic residues and only six basic residues. We have delineated the mimicry of Ocr by focusing on the electrostatic contribution of its negatively charged amino acids using directed evolution of a synthetic form of Ocr, termed pocr, in which all of the 34 acidic residues were substituted for a neutral amino acid. In vivo analyses confirmed that pocr did not display any antirestriction activity. Here, we have subjected the gene encoding pocr to several rounds of directed evolution in which codons for the corresponding acidic residues found in Ocr were specifically re-introduced. An in vivo selection assay was used to detect antirestriction activity after each round of mutation. Our results demonstrate the variation in importance of the acidic residues in regions of Ocr corresponding to different parts of the DNA target which it is mimicking and for the avoidance of deleterious effects on the growth of the host.


Asunto(s)
Proteínas Virales/genética , Secuencia de Aminoácidos , Bacteriófago T7/genética , Evolución Molecular Dirigida , Imitación Molecular , Unión Proteica , Pliegue de Proteína , Proteínas Virales/química
5.
Adv Exp Med Biol ; 915: 81-97, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27193539

RESUMEN

The Type I DNA restriction-modification (RM) systems of Staphylococcus aureus are known to act as a significant barrier to horizontal gene transfer between S. aureus strains belonging to different clonal complexes. The livestock-associated clonal complexes CC133/771 and CC398 contain Type I RM systems not found in human MRSA strains as yet but at some point transfer will occur. When this does take place, horizontal gene transfer of resistance will happen more easily between these strains. The reservoir of antibiotic resistance, virulence and host-adaptation genes present in livestock-associated MRSA will then potentially contribute to the development of newly evolving MRSA clones. The target sites recognised by the Type I RM systems of CC133/771 and CC398 were identified as CAG(N)5RTGA and ACC(N)5RTGA, respectively. Assuming that these enzymes recognise the methylation state of adenine, the underlined A and T bases indicate the unique positions of methylation. Target methylation points for enzymes from CC1 were also identified. The methylation points for CC1-1 are CCAY(N)5TTAA and those for CC1-2 are CCAY(N)6 TGT with the underline indicating the adenine methylation site thus clearing up the ambiguity noted previously (Roberts et al. 2013, Nucleic Acids Res 41:7472-7484) for the half sites containing two adenine bases.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Transferencia de Gen Horizontal , Ganado/microbiología , Staphylococcus aureus Resistente a Meticilina/enzimología , Leche/microbiología , Infecciones Estafilocócicas/microbiología , Adenina/metabolismo , Secuencia de Aminoácidos , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Secuencia de Bases , Bovinos , Metilación de ADN , ADN Bacteriano/genética , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Farmacorresistencia Bacteriana/genética , Genotipo , Interacciones Huésped-Patógeno , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Datos de Secuencia Molecular , Fenotipo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/transmisión , Especificidad por Sustrato , Virulencia/genética
6.
Biochim Biophys Acta ; 1844(3): 505-11, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24368349

RESUMEN

Anti-restriction and anti-modification (anti-RM) is the ability to prevent cleavage by DNA restriction-modification (RM) systems of foreign DNA entering a new bacterial host. The evolutionary consequence of anti-RM is the enhanced dissemination of mobile genetic elements. Homologues of ArdA anti-RM proteins are encoded by genes present in many mobile genetic elements such as conjugative plasmids and transposons within bacterial genomes. The ArdA proteins cause anti-RM by mimicking the DNA structure bound by Type I RM enzymes. We have investigated ArdA proteins from the genomes of Enterococcus faecalis V583, Staphylococcus aureus Mu50 and Bacteroides fragilis NCTC 9343, and compared them to the ArdA protein expressed by the conjugative transposon Tn916. We find that despite having very different structural stability and secondary structure content, they can all bind to the EcoKI methyltransferase, a core component of the EcoKI Type I RM system. This finding indicates that the less structured ArdA proteins become fully folded upon binding. The ability of ArdA from diverse mobile elements to inhibit Type I RM systems from other bacteria suggests that they are an advantage for transfer not only between closely-related bacteria but also between more distantly related bacterial species.


Asunto(s)
Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Secuencias Repetitivas Esparcidas , Proteínas Represoras/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Cromatografía en Gel , Dicroismo Circular , Escherichia coli K12/enzimología , Proteínas de Escherichia coli/química , Modelos Moleculares , Unión Proteica , Desnaturalización Proteica , Estructura Secundaria de Proteína , Proteínas Represoras/química
7.
Nucleic Acids Res ; 41(15): 7472-84, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23771140

RESUMEN

A limited number of Methicillin-resistant Staphylococcus aureus (MRSA) clones are responsible for MRSA infections worldwide, and those of different lineages carry unique Type I restriction-modification (RM) variants. We have identified the specific DNA sequence targets for the dominant MRSA lineages CC1, CC5, CC8 and ST239. We experimentally demonstrate that this RM system is sufficient to block horizontal gene transfer between clinically important MRSA, confirming the bioinformatic evidence that each lineage is evolving independently. Target sites are distributed randomly in S. aureus genomes, except in a set of large conjugative plasmids encoding resistance genes that show evidence of spreading between two successful MRSA lineages. This analysis of the identification and distribution of target sites explains evolutionary patterns in a pathogenic bacterium. We show that a lack of specific target sites enables plasmids to evade the Type I RM system thereby contributing to the evolution of increasingly resistant community and hospital MRSA.


Asunto(s)
Enzimas de Restricción-Modificación del ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Evolución Molecular , Transferencia de Gen Horizontal , Genoma Bacteriano , Staphylococcus aureus Resistente a Meticilina/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Biología Computacional/métodos , División del ADN , Enzimas de Restricción-Modificación del ADN/genética , ADN Bacteriano/genética , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Biblioteca de Genes , Staphylococcus aureus Resistente a Meticilina/enzimología , Sistemas de Lectura Abierta , Plásmidos/genética , Plásmidos/metabolismo
8.
Nucleic Acids Res ; 40(21): 10916-24, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23002145

RESUMEN

The EcoKI DNA methyltransferase is a trimeric protein comprised of two modification subunits (M) and one sequence specificity subunit (S). This enzyme forms the core of the EcoKI restriction/modification (RM) enzyme. The 3' end of the gene encoding the M subunit overlaps by 1 nt the start of the gene for the S subunit. Translation from the two different open reading frames is translationally coupled. Mutagenesis to remove the frameshift and fuse the two subunits together produces a functional RM enzyme in vivo with the same properties as the natural EcoKI system. The fusion protein can be purified and forms an active restriction enzyme upon addition of restriction subunits and of additional M subunit. The Type I RM systems are grouped into families, IA to IE, defined by complementation, hybridization and sequence similarity. The fusion protein forms an evolutionary intermediate form lying between the Type IA family of RM enzymes and the Type IB family of RM enzymes which have the frameshift located at a different part of the gene sequence.


Asunto(s)
Proteínas Bacterianas/genética , Enzimas de Restricción-Modificación del ADN/genética , Proteínas de Escherichia coli/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Fusión Artificial Génica , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Colifagos/genética , División del ADN , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/metabolismo , Enzimas de Restricción-Modificación del ADN/química , Enzimas de Restricción-Modificación del ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Sistema de Lectura Ribosómico , Mutagénesis , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Transformación Bacteriana
9.
Nucleic Acids Res ; 40(16): 8129-43, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22684506

RESUMEN

DNA mimic proteins have evolved to control DNA-binding proteins by competing with the target DNA for binding to the protein. The Ocr protein of bacteriophage T7 is the most studied DNA mimic and functions to block the DNA-binding groove of Type I DNA restriction/modification enzymes. This binding prevents the enzyme from cleaving invading phage DNA. Each 116 amino acid monomer of the Ocr dimer has an unusual amino acid composition with 34 negatively charged side chains but only 6 positively charged side chains. Extensive mutagenesis of the charges of Ocr revealed a regression of Ocr activity from wild-type activity to partial activity then to variants inactive in antirestriction but deleterious for cell viability and lastly to totally inactive variants with no deleterious effect on cell viability. Throughout the mutagenesis the Ocr mutant proteins retained their folding. Our results show that the extreme bias in charged amino acids is not necessary for antirestriction activity but that less charged variants can affect cell viability by leading to restriction proficient but modification deficient cell phenotypes.


Asunto(s)
Imitación Molecular , Proteínas Virales/química , Calorimetría , ADN/química , División del ADN , Enzimas de Restricción del ADN/metabolismo , Escherichia coli/citología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Modelos Moleculares , Mutación , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
10.
Nucleic Acids Res ; 39(17): 7667-76, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21685455

RESUMEN

Type I DNA restriction/modification systems are oligomeric enzymes capable of switching between a methyltransferase function on hemimethylated host DNA and an endonuclease function on unmethylated foreign DNA. They have long been believed to not turnover as endonucleases with the enzyme becoming inactive after cleavage. Cleavage is preceded and followed by extensive ATP hydrolysis and DNA translocation. A role for dissociation of subunits to allow their reuse has been proposed for the EcoR124I enzyme. The EcoKI enzyme is a stable assembly in the absence of DNA, so recycling was thought impossible. Here, we demonstrate that EcoKI becomes unstable on long unmethylated DNA; reuse of the methyltransferase subunits is possible so that restriction proceeds until the restriction subunits have been depleted. We observed that RecBCD exonuclease halts restriction and does not assist recycling. We examined the DNA structure required to initiate ATP hydrolysis by EcoKI and find that a 21-bp duplex with single-stranded extensions of 12 bases on either side of the target sequence is sufficient to support hydrolysis. Lastly, we discuss whether turnover is an evolutionary requirement for restriction, show that the ATP hydrolysis is not deleterious to the host cell and discuss how foreign DNA occasionally becomes fully methylated by these systems.


Asunto(s)
Adenosina Trifosfato/metabolismo , División del ADN , Enzimas de Restricción del ADN/metabolismo , ADN/química , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , ADN/metabolismo , Exodesoxirribonucleasa V/metabolismo , Hidrólisis , Cinética , Subunidades de Proteína/metabolismo
11.
Chemphyschem ; 12(1): 161-5, 2011 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-21226197

RESUMEN

Fluorescent proteins are increasingly becoming actuators in a range of cell biology techniques. One of those techniques is chromophore-assisted laser inactivation (CALI), which is employed to specifically inactivate the function of target proteins or organelles by producing photochemical damage. CALI is achieved by the irradiation of dyes that are able to produce reactive oxygen species (ROS). The combination of CALI and the labelling specificity that fluorescent proteins provide is useful to avoid uncontrolled photodamage, although the inactivation mechanisms by ROS are dependent on the fluorescent protein and are not fully understood. Herein, we present a quantitative study of the ability of the red fluorescent protein TagRFP to produce ROS, in particular singlet oxygen ((1)O(2)). TagRFP is able to photosensitize (1)O(2) with an estimated quantum yield of 0.004. This is the first estimation of a quantum yield of (1)O(2) production value for a GFP-like protein. We also find that TagRFP has a short triplet lifetime compared to EGFP, which reflects relatively high oxygen accessibility to the chromophore. The insight into the structural and photophysical properties of TagRFP has implications in improving fluorescent proteins for fluorescence microscopy and CALI.


Asunto(s)
Proteínas Luminiscentes/metabolismo , Oxígeno Singlete/metabolismo , Rayos Láser , Proteínas Luminiscentes/química , Microscopía Fluorescente , Fotoquímica , Teoría Cuántica , Especies Reactivas de Oxígeno/metabolismo , Oxígeno Singlete/química
12.
Nucleic Acids Res ; 37(6): 2053-63, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19223329

RESUMEN

Atomic force microscopy (AFM) allows the study of single protein-DNA interactions such as those observed with the Type I Restriction-Modification systems. The mechanisms employed by these systems are complicated and understanding them has proved problematic. It has been known for years that these enzymes translocate DNA during the restriction reaction, but more recent AFM work suggested that the archetypal EcoKI protein went through an additional dimerization stage before the onset of translocation. The results presented here extend earlier findings confirming the dimerization. Dimerization is particularly common if the DNA molecule contains two EcoKI recognition sites. DNA loops with dimers at their apex form if the DNA is sufficiently long, and also form in the presence of ATPgammaS, a non-hydrolysable analogue of the ATP required for translocation, indicating that the looping is on the reaction pathway of the enzyme. Visualization of specific DNA loops in the protein-DNA constructs was achieved by improved sample preparation and analysis techniques. The reported dimerization and looping mechanism is unlikely to be exclusive to EcoKI, and offers greater insight into the detailed functioning of this and other higher order assemblies of proteins operating by bringing distant sites on DNA into close proximity via DNA looping.


Asunto(s)
Enzimas de Restricción del ADN/ultraestructura , ADN/ultraestructura , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Sitios de Unión , ADN/química , ADN/metabolismo , Enzimas de Restricción del ADN/metabolismo , Interpretación Estadística de Datos , Dimerización , Microscopía de Fuerza Atómica , Unión Proteica , Multimerización de Proteína , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/ultraestructura
13.
Nucleic Acids Res ; 37(3): 762-70, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19074193

RESUMEN

Type-I DNA restriction-modification (R/M) systems are important agents in limiting the transmission of mobile genetic elements responsible for spreading bacterial resistance to antibiotics. EcoKI, a Type I R/M enzyme from Escherichia coli, acts by methylation- and sequence-specific recognition, leading to either methylation of DNA or translocation and cutting at a random site, often hundreds of base pairs away. Consisting of one specificity subunit, two modification subunits, and two DNA translocase/endonuclease subunits, EcoKI is inhibited by the T7 phage antirestriction protein ocr, a DNA mimic. We present a 3D density map generated by negative-stain electron microscopy and single particle analysis of the central core of the restriction complex, the M.EcoKI M(2)S(1) methyltransferase, bound to ocr. We also present complete atomic models of M.EcoKI in complex with ocr and its cognate DNA giving a clear picture of the overall clamp-like operation of the enzyme. The model is consistent with a large body of experimental data on EcoKI published over 40 years.


Asunto(s)
Modelos Moleculares , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química , Proteínas Virales/química , ADN/química , Escherichia coli/enzimología , Imitación Molecular , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/ultraestructura , Proteínas Virales/ultraestructura
14.
Nucleic Acids Res ; 37(15): 4887-97, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19506028

RESUMEN

The ardA gene, found in many prokaryotes including important pathogenic species, allows associated mobile genetic elements to evade the ubiquitous Type I DNA restriction systems and thereby assist the spread of resistance genes in bacterial populations. As such, ardA contributes to a major healthcare problem. We have solved the structure of the ArdA protein from the conjugative transposon Tn916 and find that it has a novel extremely elongated curved cylindrical structure with defined helical grooves. The high density of aspartate and glutamate residues on the surface follow a helical pattern and the whole protein mimics a 42-base pair stretch of B-form DNA making ArdA by far the largest DNA mimic known. Each monomer of this dimeric structure comprises three alpha-beta domains, each with a different fold. These domains have the same fold as previously determined proteins possessing entirely different functions. This DNA mimicry explains how ArdA can bind and inhibit the Type I restriction enzymes and we demonstrate that 6 different ardA from pathogenic bacteria can function in Escherichia coli hosting a range of different Type I restriction systems.


Asunto(s)
Proteínas Bacterianas/química , Enzimas de Restricción-Modificación del ADN/antagonistas & inhibidores , Imitación Molecular , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , ADN/química , Desoxirribonucleasas de Localización Especificada Tipo I/antagonistas & inhibidores , Dimerización , Farmacorresistencia Bacteriana/genética , Genoma Bacteriano , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química
16.
Biochem Biophys Res Commun ; 398(2): 254-9, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20599730

RESUMEN

We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Förster resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.


Asunto(s)
Desoxirribonucleasas de Localización Especificada Tipo I/química , Proteínas Fluorescentes Verdes/química , Proteínas Recombinantes de Fusión/química , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química , ADN/química , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/genética , Proteínas Recombinantes de Fusión/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética
17.
FEBS J ; 280(19): 4903-14, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23910724

RESUMEN

ArdA antirestriction proteins are encoded by genes present in many conjugative plasmids and transposons within bacterial genomes. Antirestriction is the ability to prevent cleavage of foreign incoming DNA by restriction-modification (RM) systems. Antimodification, the ability to inhibit modification by the RM system, can also be observed with some antirestriction proteins. As these mobile genetic elements can transfer antibiotic resistance genes, the ArdA proteins assist their spread. The consequence of antirestriction is therefore the enhanced dissemination of mobile genetic elements. ArdA proteins cause antirestriction by mimicking the DNA structure bound by Type I RM enzymes. The crystal structure of ArdA showed it to be a dimeric protein with a highly elongated curved cylindrical shape [McMahon SA et al. (2009) Nucleic Acids Res 37, 4887-4897]. Each monomer has three domains covered with negatively charged side chains and a very small interface with the other monomer. We investigated the role of the domain forming the dimer interface for ArdA activity via site-directed mutagenesis. The antirestriction activity of ArdA was maintained when up to seven mutations per monomer were made or the interface was disrupted such that the protein could only exist as a monomer. The antimodification activity of ArdA was lost upon mutation of this domain. The ability of the monomeric form of ArdA to function in antirestriction suggests, first, that it can bind independently to the restriction subunit or the modification subunits of the RM enzyme, and second, that the many ArdA homologues with long amino acid extensions, present in sequence databases, may be active in antirestriction.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Enzimas de Restricción del ADN/química , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferencia de Gen Horizontal/genética , Mutación , Multimerización de Proteína/genética , Multimerización de Proteína/fisiología , Estructura Secundaria de Proteína , Proteínas Represoras/metabolismo
18.
J Mol Biol ; 391(3): 565-76, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19523474

RESUMEN

The homodimeric Ocr (overcome classical restriction) protein of bacteriophage T7 is a molecular mimic of double-stranded DNA and a highly effective competitive inhibitor of the bacterial type I restriction/modification system. The surface of Ocr is replete with acidic residues that mimic the phosphate backbone of DNA. In addition, Ocr also mimics the overall dimensions of a bent 24-bp DNA molecule. In this study, we attempted to delineate these two mechanisms of DNA mimicry by chemically modifying the negative charges on the Ocr surface. Our analysis reveals that removal of about 46% of the carboxylate groups per Ocr monomer results in an approximately 50-fold reduction in binding affinity for a methyltransferase from a model type I restriction/modification system. The reduced affinity between Ocr with this degree of modification and the methyltransferase is comparable with the affinity of DNA for the methyltransferase. Additional modification to remove approximately 86% of the carboxylate groups further reduces its binding affinity, although the modified Ocr still binds to the methyltransferase via a mechanism attributable to the shape mimicry of a bent DNA molecule. Our results show that the electrostatic mimicry of Ocr increases the binding affinity for its target enzyme by up to approximately 800-fold.


Asunto(s)
Bacteriófago T7 , ADN/química , Imitación Molecular , Proteínas Virales/química , Unión Competitiva , Dimerización , Metiltransferasas/química , Conformación de Ácido Nucleico , Pliegue de Proteína
19.
J Mol Biol ; 383(5): 970-81, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18838147

RESUMEN

Gene orf18, which is situated within the intercellular transposition region of the conjugative transposon Tn916 from the bacterial pathogen Enterococcus faecalis, encodes a putative ArdA (alleviation of restriction of DNA A) protein. Conjugative transposons are generally resistant to DNA restriction upon transfer to a new host. ArdA from Tn916 may be responsible for the apparent immunity of the transposon to DNA restriction and modification (R/M) systems and for ensuring that the transposon has a broad host range. The orf18 gene was engineered for overexpression in Escherichia coli, and the recombinant ArdA protein was purified to homogeneity. The protein appears to exist as a dimer at nanomolar concentrations but can form larger assemblies at micromolar concentrations. R/M assays revealed that ArdA can efficiently inhibit R/M by all four major classes of Type I R/M enzymes both in vivo and in vitro. These R/M systems are present in over 50% of sequenced prokaryotic genomes. Our results suggest that ArdA can overcome the restriction barrier following conjugation and so helps increase the spread of antibiotic resistance genes by horizontal gene transfer.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enzimas de Restricción-Modificación del ADN/antagonistas & inhibidores , Elementos Transponibles de ADN/genética , Enterococcus faecalis/metabolismo , Proteínas Bacterianas/química , Unión Competitiva , Rastreo Diferencial de Calorimetría , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/metabolismo , Electroforesis en Gel de Poliacrilamida , Peso Molecular , Sistemas de Lectura Abierta/genética , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/antagonistas & inhibidores , Espectrometría de Fluorescencia , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA