Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 39: 227-249, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33534603

RESUMEN

Primary immunodeficiency diseases (PIDs) are a rapidly growing, heterogeneous group of genetically determined diseases characterized by defects in the immune system. While individually rare, collectively PIDs affect between 1/1,000 and 1/5,000 people worldwide. The clinical manifestations of PIDs vary from susceptibility to infections to autoimmunity and bone marrow failure. Our understanding of the human immune response has advanced by investigation and discovery of genetic mechanisms of PIDs. Studying patients with isolated genetic variants in proteins that participate in complex signaling pathways has led to an enhanced understanding of host response to infection, and mechanisms of autoimmunity and autoinflammation. Identifying genetic mechanisms of PIDs not only furthers immunological knowledge but also benefits patients by dictating targeted therapies or hematopoietic stem cell transplantation. Here, we highlight several of these areas in the field of primary immunodeficiency, with a focus on the most recent advances.


Asunto(s)
Síndromes de Inmunodeficiencia , Enfermedades de Inmunodeficiencia Primaria , Animales , Autoinmunidad/genética , Humanos , Sistema Inmunológico , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/terapia
2.
Immunity ; 55(12): 2386-2404.e8, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36446385

RESUMEN

The association between cancer and autoimmune disease is unexplained, exemplified by T cell large granular lymphocytic leukemia (T-LGL) where gain-of-function (GOF) somatic STAT3 mutations correlate with co-existing autoimmunity. To investigate whether these mutations are the cause or consequence of CD8+ T cell clonal expansions and autoimmunity, we analyzed patients and mice with germline STAT3 GOF mutations. STAT3 GOF mutations drove the accumulation of effector CD8+ T cell clones highly expressing NKG2D, the receptor for stress-induced MHC-class-I-related molecules. This subset also expressed genes for granzymes, perforin, interferon-γ, and Ccl5/Rantes and required NKG2D and the IL-15/IL-2 receptor IL2RB for maximal accumulation. Leukocyte-restricted STAT3 GOF was sufficient and CD8+ T cells were essential for lethal pathology in mice. These results demonstrate that STAT3 GOF mutations cause effector CD8+ T cell oligoclonal accumulation and that these rogue cells contribute to autoimmune pathology, supporting the hypothesis that somatic mutations in leukemia/lymphoma driver genes contribute to autoimmune disease.


Asunto(s)
Enfermedades Autoinmunes , Leucemia Linfocítica Granular Grande , Animales , Ratones , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología , Linfocitos T CD8-positivos , Mutación con Ganancia de Función , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/patología , Mutación , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
3.
Immunity ; 51(3): 479-490.e6, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31402259

RESUMEN

Natural killer (NK) cells are cytotoxic type 1 innate lymphoid cells (ILCs) that defend against viruses and mediate anti-tumor responses, yet mechanisms controlling their development and function remain incompletely understood. We hypothesized that the abundantly expressed microRNA-142 (miR-142) is a critical regulator of type 1 ILC biology. Interleukin-15 (IL-15) signaling induced miR-142 expression, whereas global and ILC-specific miR-142-deficient mice exhibited a cell-intrinsic loss of NK cells. Death of NK cells resulted from diminished IL-15 receptor signaling within miR-142-deficient mice, likely via reduced suppressor of cytokine signaling-1 (Socs1) regulation by miR-142-5p. ILCs persisting in Mir142-/- mice demonstrated increased expression of the miR-142-3p target αV integrin, which supported their survival. Global miR-142-deficient mice exhibited an expansion of ILC1-like cells concurrent with increased transforming growth factor-ß (TGF-ß) signaling. Further, miR-142-deficient mice had reduced NK-cell-dependent function and increased susceptibility to murine cytomegalovirus (MCMV) infection. Thus, miR-142 critically integrates environmental cues for proper type 1 ILC homeostasis and defense against viral infection.


Asunto(s)
Homeostasis/inmunología , Inmunidad Innata/inmunología , Linfocitos/inmunología , MicroARNs/inmunología , Animales , Línea Celular , Femenino , Células HEK293 , Humanos , Células Asesinas Naturales/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Muromegalovirus/inmunología , Células 3T3 NIH , Receptores de Interleucina-15/inmunología , Transducción de Señal/inmunología , Proteínas Supresoras de la Señalización de Citocinas/inmunología , Factor de Crecimiento Transformador beta/inmunología
4.
Semin Immunol ; 67: 101761, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37062181

RESUMEN

Inborn errors of immunity (IEI) are a diverse group of monogenic disorders of the immune system due to germline variants in genes important for the immune response. Over the past decade there has been increasing recognition that acquired somatic variants present in a subset of cells can also lead to immune disorders or 'phenocopies' of IEI. Discovery of somatic mosaicism causing IEI has largely arisen from investigation of seemingly sporadic cases of IEI with predominant symptoms of autoinflammation and/or autoimmunity in which germline disease-causing variants are not detected. Disease-causing somatic mosaicism has been identified in genes that also cause germline IEI, such as FAS, and in genes without significant corresponding germline disease, such as UBA1 and TLR8. There are challenges in detecting low-level somatic variants, and it is likely that the extent of the somatic mosaicism causing IEI is largely uncharted. Here we review the field of somatic mosaicism leading to IEI and discuss challenges and methods for somatic variant detection, including diagnostic approaches for molecular diagnoses of patients.


Asunto(s)
Autoinmunidad , Mosaicismo , Humanos , Fenotipo
5.
Eur J Immunol ; : e2451173, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246120

RESUMEN

Natural killer (NK) cells are innate lymphoid cells that protect a host from viral infections and malignancies. MicroRNA-146a (miR-146a) is an important regulator of immune function that is highly expressed in NK cells and is further upregulated during murine cytomegalovirus (MCMV) infection. Here we utilized mice with a global targeted deletion of miR-146a to understand its impact on the innate immune responses to MCMV infection. MiR-146a-/- mice were protected from lethal MCMV infection, which was intrinsic to the hematopoietic compartment based on bone marrow chimera experiments. NK cell depletion abrogated this protection, implicating NK cells as critical for the miR-146a-/- protection from MCMV. Surprisingly, NK cells from miR-146a-deficient mice were largely similar to control NK cells with respect to development, maturation, trafficking, and effector functions. However, miR-146a-/- mice had increased NK cell numbers and frequency of the most mature Stage IV (CD27-CD11b+) NK cells in the liver at baseline, enhanced STAT1 phosphorylation, and increased selective expansion of Ly49H+ NK cells and T cells during MCMV infection. This study demonstrates a critical role for miR-146a in the host response to MCMV, arising from mechanisms that include increased NK cell numbers and early T-cell expansion.

7.
Immunity ; 45(2): 229-31, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27533007

RESUMEN

Natural killer cells readily kill target cells, and education ensures tolerance to self. In this issue of Immunity, Boudreau et al. (2016) and Chen et al. (2016) report new mechanisms of human and mouse natural killer cell education by inhibitory and activating receptors.


Asunto(s)
Tolerancia Inmunológica , Células Asesinas Naturales/inmunología , Animales , Humanos
8.
J Immunol ; 210(10): 1463-1472, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37126806

RESUMEN

The STAT family proteins provide critical signals for immune cell development, differentiation, and proinflammatory and anti-inflammatory responses. Inborn errors of immunity (IEIs) are caused by single gene defects leading to immune deficiency and/or dysregulation, and they have provided opportunities to identify genes important for regulating the human immune response. Studies of patients with IEIs due to altered STAT signaling, and mouse models of these diseases, have helped to shape current understanding of the mechanisms whereby STAT signaling and protein interactions regulate immunity. Although many STAT signaling pathways are shared, clinical and immune phenotypes in patients with monogenic defects of STAT signaling highlight both redundant and nonredundant pathways. In this review, we provide an overview of the shared and unique signaling pathways used by STATs, phenotypes of IEIs with altered STAT signaling, and recent discoveries that have provided insight into the human immune response and treatment of disease.


Asunto(s)
Inmunidad , Factores de Transcripción STAT , Transducción de Señal , Animales , Humanos , Ratones , Transducción de Señal/fisiología , Factores de Transcripción STAT/inmunología , Modelos Animales de Enfermedad , Fenotipo
9.
J Immunol ; 211(10): 1481-1493, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37747317

RESUMEN

NK effector functions can be triggered by inflammatory cytokines and engagement of activating receptors. NK cell production of IFN-γ, an important immunoregulatory cytokine, exhibits activation-specific IFN-γ regulation. Resting murine NK cells exhibit activation-specific metabolic requirements for IFN-γ production, which are reversed for activating receptor-mediated stimulation following IL-15 priming. Although both cytokine and activating receptor stimulation leads to similar IFN-γ protein production, only cytokine stimulation upregulates Ifng transcript, suggesting that protein production is translationally regulated after receptor stimulation. Based on these differences in IFN-γ regulation, we hypothesized that ex vivo IL-15 priming of murine NK cells allows a switch to IFN-γ transcription upon activating receptor engagement. Transcriptional analysis of primed NK cells compared with naive cells or cells cultured with low-dose IL-15 demonstrated that primed cells strongly upregulated Ifng transcript following activating receptor stimulation. This was not due to chromatin accessibility changes in the Ifng locus or changes in ITAM signaling, but was associated with a distinct transcriptional signature induced by ITAM stimulation of primed compared with naive NK cells. Transcriptional analyses identified a common signature of c-Myc (Myc) targets associated with Ifng transcription. Although Myc marked NK cells capable of Ifng transcription, Myc itself was not required for Ifng transcription using a genetic model of Myc deletion. This work highlights altered regulatory networks in IL-15-primed cells, resulting in distinct gene expression patterns and IFN-γ regulation in response to activating receptor stimulation.


Asunto(s)
Interleucina-15 , Células Asesinas Naturales , Animales , Ratones , Citocinas/metabolismo , Interferón gamma/metabolismo , Interleucina-15/metabolismo , Células Asesinas Naturales/metabolismo , Transducción de Señal
10.
J Allergy Clin Immunol ; 153(4): 1113-1124.e7, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38065233

RESUMEN

BACKGROUND: Patients with deleterious variants in MYSM1 have an immune deficiency characterized by B-cell lymphopenia, hypogammaglobulinemia, and increased radiosensitivity. MYSM1 is a histone deubiquitinase with established activity in regulating gene expression. MYSM1 also localizes to sites of DNA injury but its function in cellular responses to DNA breaks has not been elucidated. OBJECTIVES: This study sought to determine the activity of MYSM1 in regulating DNA damage responses (DDRs) to DNA double-stranded breaks (DSBs) generated during immunoglobulin receptor gene (Ig) recombination and by ionizing radiation. METHODS: MYSM1-deficient pre- and non-B cells were used to determine the role of MYSM1 in DSB generation, DSB repair, and termination of DDRs. RESULTS: Genetic testing in a newborn with abnormal screen for severe combined immune deficiency, T-cell lymphopenia, and near absence of B cells identified a novel splice variant in MYSM1 that results in nearly absent protein expression. Radiosensitivity testing in patient's peripheral blood lymphocytes showed constitutive γH2AX, a marker of DNA damage, in B cells in the absence of irradiation, suggesting a role for MYSM1 in response to DSBs generated during Ig recombination. Suppression of MYSM1 in pre-B cells did not alter generation or repair of Ig DSBs. Rather, loss of MYSM1 resulted in persistent DNA damage foci and prolonged DDR signaling. Loss of MYSM1 also led to protracted DDRs in U2OS cells with irradiation induced DSBs. CONCLUSIONS: MYSM1 regulates termination of DNA damage responses but does not function in DNA break generation and repair.


Asunto(s)
Daño del ADN , Reparación del ADN , Linfopenia , Humanos , Recién Nacido , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Histonas/genética , Histonas/metabolismo , Linfopenia/genética , Transactivadores/genética , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
11.
J Allergy Clin Immunol ; 153(1): 216-229, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37714437

RESUMEN

BACKGROUND: Although most individuals effectively control herpesvirus infections, some suffer from severe and/or recurrent infections. A subset of these patients possess defects in natural killer (NK) cells, lymphocytes that recognize and lyse herpesvirus-infected cells; however, the genetic etiology is rarely diagnosed. PLCG2 encodes a signaling protein in NK-cell and B-cell signaling. Dominant-negative or gain-of-function variants in PLCG2 cause cold urticaria, antibody deficiency, and autoinflammation. However, loss-of-function variants and haploinsufficiency have not been reported to date. OBJECTIVES: The investigators aimed to identify the genetic cause of NK-cell immunodeficiency in 2 families and herein describe the functional consequences of 2 novel loss-of-function variants in PLCG2. METHODS: The investigators employed whole-exome sequencing in conjunction with mass cytometry, microscopy, functional assays, and a mouse model of PLCG2 haploinsufficiency to investigate 2 families with NK-cell immunodeficiency. RESULTS: The investigators identified novel heterozygous variants in PLCG2 in 2 families with severe and/or recurrent herpesvirus infections. In vitro studies demonstrated that these variants were loss of function due to haploinsufficiency with impaired NK-cell calcium flux and cytotoxicity. In contrast to previous PLCG2 variants, B-cell function remained intact. Plcg2+/- mice also displayed impaired NK-cell function with preserved B-cell function, phenocopying human disease. CONCLUSIONS: PLCG2 haploinsufficiency represents a distinct syndrome from previous variants characterized by NK-cell immunodeficiency with herpesvirus susceptibility, expanding the spectrum of PLCG2-related disease.


Asunto(s)
Haploinsuficiencia , Síndromes de Inmunodeficiencia , Fosfolipasa C gamma , Animales , Humanos , Ratones , Infecciones por Herpesviridae , Síndromes de Inmunodeficiencia/genética , Células Asesinas Naturales , Transducción de Señal , Fosfolipasa C gamma/genética
12.
J Clin Immunol ; 44(2): 48, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38231347

RESUMEN

The caspase activation and recruitment domain 11 (CARD11) gene encodes a scaffold protein required for lymphocyte antigen receptor signaling. Dominant-negative, loss-of-function (LOF) pathogenic variants in CARD11 result in CARD11-associated atopy with dominant interference of NF-κB signaling (CADINS) disease. Patients with CADINS suffer with severe atopic manifestations including atopic dermatitis, food allergy, and chronic spontaneous urticaria in addition to recurrent infections and autoimmunity. We assessed the response of dupilumab in five patients and omalizumab in one patient with CADINS for the treatment of severe atopic symptoms. CARD11 mutations were validated for pathogenicity using a T cell transfection assay to assess the impact on activation-induced signaling to NF-κB. Three children and three adults with dominant-negative CARD11 LOF mutations were included. All developed atopic disease in infancy or early childhood. In five patients, atopic dermatitis was severe and recalcitrant to standard topical and systemic medications; one adult suffered from chronic spontaneous urticaria. Subcutaneous dupilumab was initiated to treat atopic dermatitis and omalizumab to treat chronic spontaneous urticaria. All six patients had rapid and sustained improvement in atopic symptoms with no complications during the follow-up period. Previous medications used to treat atopy were able to be decreased or discontinued. In conclusion, treatment with dupilumab and omalizumab for severe, refractory atopic disease in patients with CADINS appears to be effective and well tolerated in patients with CADINS with severe atopy.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Urticaria Crónica , Dermatitis Atópica , Preescolar , Adulto , Niño , Humanos , Omalizumab/uso terapéutico , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/genética , FN-kappa B
13.
Blood ; 139(7): 1039-1051, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34767620

RESUMEN

Human telomere biology disorders (TBD)/short telomere syndromes (STS) are heterogeneous disorders caused by inherited loss-of-function mutations in telomere-associated genes. Here, we identify 3 germline heterozygous missense variants in the RPA1 gene in 4 unrelated probands presenting with short telomeres and varying clinical features of TBD/STS, including bone marrow failure, myelodysplastic syndrome, T- and B-cell lymphopenia, pulmonary fibrosis, or skin manifestations. All variants cluster to DNA-binding domain A of RPA1 protein. RPA1 is a single-strand DNA-binding protein required for DNA replication and repair and involved in telomere maintenance. We showed that RPA1E240K and RPA1V227A proteins exhibit increased binding to single-strand and telomeric DNA, implying a gain in DNA-binding function, whereas RPA1T270A has binding properties similar to wild-type protein. To study the mutational effect in a cellular system, CRISPR/Cas9 was used to knock-in the RPA1E240K mutation into healthy inducible pluripotent stem cells. This resulted in severe telomere shortening and impaired hematopoietic differentiation. Furthermore, in patients with RPA1E240K, we discovered somatic genetic rescue in hematopoietic cells due to an acquired truncating cis RPA1 mutation or a uniparental isodisomy 17p with loss of mutant allele, coinciding with stabilized blood counts. Using single-cell sequencing, the 2 somatic genetic rescue events were proven to be independently acquired in hematopoietic stem cells. In summary, we describe the first human disease caused by germline RPA1 variants in individuals with TBD/STS.


Asunto(s)
Trastornos de Fallo de la Médula Ósea/patología , Mutación con Ganancia de Función , Heterocigoto , Síndromes Mielodisplásicos/patología , Proteína de Replicación A/genética , Acortamiento del Telómero , Telómero/genética , Adolescente , Adulto , Trastornos de Fallo de la Médula Ósea/etiología , Trastornos de Fallo de la Médula Ósea/metabolismo , Diferenciación Celular , Niño , Femenino , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/etiología , Síndromes Mielodisplásicos/metabolismo , Adulto Joven
14.
Adv Exp Med Biol ; 1448: 145-159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39117813

RESUMEN

Natural killer (NK) cells are innate immune lymphocytes that rapidly produce cytokines upon activation and kill target cells. NK cells have been of particular interest in primary hemophagocytic lymphohistiocytosis (pHLH) since all of the genetic defects associated with this disorder cause diminished cytotoxic capacity of NK cells and T lymphocytes, and assays of NK cell killing are used clinically for the diagnosis of HLH. Herein, we review human NK cell biology and the significance of alterations in NK cell function in the diagnosis and pathogenesis of HLH.


Asunto(s)
Síndrome de Liberación de Citoquinas , Células Asesinas Naturales , Linfohistiocitosis Hemofagocítica , Humanos , Animales , Células Asesinas Naturales/inmunología , Síndrome de Liberación de Citoquinas/inmunología , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/inmunología , Citocinas/inmunología
15.
Am J Hum Genet ; 107(6): 1029-1043, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33202260

RESUMEN

Genetic testing has increased the number of variants identified in disease genes, but the diagnostic utility is limited by lack of understanding variant function. CARD11 encodes an adaptor protein that expresses dominant-negative and gain-of-function variants associated with distinct immunodeficiencies. Here, we used a "cloning-free" saturation genome editing approach in a diploid cell line to simultaneously score 2,542 variants for decreased or increased function in the region of CARD11 associated with immunodeficiency. We also described an exon-skipping mechanism for CARD11 dominant-negative activity. The classification of reported clinical variants was sensitive (94.6%) and specific (88.9%), which rendered the data immediately useful for interpretation of seven coding and splicing variants implicated in immunodeficiency found in our clinic. This approach is generalizable for variant interpretation in many other clinically actionable genes, in any relevant cell type.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/genética , Variación Genética , Guanilato Ciclasa/genética , Síndromes de Inmunodeficiencia/genética , Adenina/análogos & derivados , Adenina/farmacología , Proteína 10 de la LLC-Linfoma de Células B/genética , Linfocitos B/citología , Línea Celular , Diploidia , Exones , Genes Dominantes , Humanos , Células Jurkat , Linfoma/genética , Subunidad p50 de NF-kappa B/genética , Piperidinas/farmacología , Polimorfismo de Nucleótido Simple , Enfermedades de Inmunodeficiencia Primaria/genética , Sensibilidad y Especificidad
16.
Blood ; 137(18): 2450-2462, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33512449

RESUMEN

Inborn errors of immunity (IEI) are a genetically heterogeneous group of disorders with a broad clinical spectrum. Identification of molecular and functional bases of these disorders is important for diagnosis, treatment, and an understanding of the human immune response. We identified 6 unrelated males with neutropenia, infections, lymphoproliferation, humoral immune defects, and in some cases bone marrow failure associated with 3 different variants in the X-linked gene TLR8, encoding the endosomal Toll-like receptor 8 (TLR8). Interestingly, 5 patients had somatic variants in TLR8 with <30% mosaicism, suggesting a dominant mechanism responsible for the clinical phenotype. Mosaicism was also detected in skin-derived fibroblasts in 3 patients, demonstrating that mutations were not limited to the hematopoietic compartment. All patients had refractory chronic neutropenia, and 3 patients underwent allogeneic hematopoietic cell transplantation. All variants conferred gain of function to TLR8 protein, and immune phenotyping demonstrated a proinflammatory phenotype with activated T cells and elevated serum cytokines associated with impaired B-cell maturation. Differentiation of myeloid cells from patient-derived induced pluripotent stem cells demonstrated increased responsiveness to TLR8. Together, these findings demonstrate that gain-of-function variants in TLR8 lead to a novel childhood-onset IEI with lymphoproliferation, neutropenia, infectious susceptibility, B- and T-cell defects, and in some cases, bone marrow failure. Somatic mosaicism is a prominent molecular mechanism of this new disease.


Asunto(s)
Trastornos de Fallo de la Médula Ósea/patología , Mutación con Ganancia de Función , Síndromes de Inmunodeficiencia/patología , Inflamación/patología , Mosaicismo , Pancitopenia/patología , Receptor Toll-Like 8/genética , Adolescente , Adulto , Linfocitos B/patología , Trastornos de Fallo de la Médula Ósea/etiología , Trastornos de Fallo de la Médula Ósea/metabolismo , Diferenciación Celular , Niño , Preescolar , Citocinas/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Síndromes de Inmunodeficiencia/etiología , Síndromes de Inmunodeficiencia/metabolismo , Lactante , Inflamación/etiología , Inflamación/metabolismo , Activación de Linfocitos , Masculino , Pancitopenia/etiología , Pancitopenia/metabolismo , Linaje , Pronóstico , Linfocitos T/inmunología , Adulto Joven
17.
Clin Transplant ; 37(2): e14897, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36585934

RESUMEN

BACKGROUND: Direct oral anticoagulants (DOACs) are widely utilized following cardiothoracic transplantation with limited guidance regarding drug-drug interactions (DDIs), periprocedural management, and DOAC-specific monitoring. METHODS: We performed a single-center, retrospective, descriptive analysis of adult cardiothoracic transplant recipients initiated on DOAC therapy between May 2016 and July 2021. The primary endpoint for this analysis was the percentage of patients dosed per package labeling. Secondary endpoints included DOAC prescribing in the context of DDIs, renal dysfunction, and periprocedural management, as well as thromboembolism and major bleeding at 12 months. RESULTS: A total of 125 patients were included in this analysis with a median age of 62 years. At initiation, 63.2% of patients were dosed according to package labeling. The most common reason for non-labeled dosing was concomitant azole antifungal therapy. DOAC therapy was held for 82 procedures with no reported thrombotic events and one major bleed in the setting of AKI. Hemodialysis-dependence was associated with a reduced risk of thrombosis (0 vs. 10 events per 100 PY, p = .002) and an increased risk of major bleeding (23 vs. 8 events per 100 PY, p = .006). Additionally, DOAC-specific anti-xa guided dosing was associated with a reduced risk of major bleeding (0 vs. 13 events per 100 PY, p < .001). CONCLUSION: Our findings show that deviation from package labeling is common following cardiothoracic transplantation and its association with clinical outcomes warrants further study.


Asunto(s)
Anticoagulantes , Fibrilación Atrial , Adulto , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Receptores de Trasplantes , Hemorragia/tratamiento farmacológico , Hemorragia/etiología , Pulmón , Administración Oral , Fibrilación Atrial/tratamiento farmacológico
18.
J Immunol ; 207(10): 2423-2432, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654687

RESUMEN

Genetic analysis of human inborn errors of immunity has defined the contribution of specific cell populations and molecular pathways in the host defense against infection. The STAT family of transcription factors orchestrate hematopoietic cell differentiation. Patients with de novo activating mutations of STAT3 present with multiorgan autoimmunity, lymphoproliferation, and recurrent infections. We conducted a detailed characterization of the blood monocyte and dendritic cell (DC) subsets in patients with gain-of-function (GOF) mutations across the gene. We found a selective deficiency in circulating nonclassical CD16+ and intermediate CD16+CD14+ monocytes and a significant increase in the percentage of classical CD14+ monocytes. This suggests a role for STAT3 in the transition of classical CD14+ monocytes into the CD16+ nonclassical subset. Developmentally, ex vivo-isolated STAT3GOF CD14+ monocytes fail to differentiate into CD1a+ monocyte-derived DCs. Moreover, patients with STAT3GOF mutations display reduced circulating CD34+ hematopoietic progenitors and frequency of myeloid DCs. Specifically, we observed a reduction in the CD141+ DC population, with no difference in the frequencies of CD1c+ and plasmacytoid DCs. CD34+ hematopoietic progenitor cells from patients were found to differentiate into CD1c+ DCs, but failed to differentiate into CD141+ DCs indicating an intrinsic role for STAT3 in this process. STAT3GOF-differentiated DCs produced lower amounts of CCL22 than healthy DCs, which could further explain some of the patient pathological phenotypes. Thus, our findings provide evidence that, in humans, STAT3 serves to regulate development and differentiation of nonclassical CD16+ monocytes and a subset of myeloid DCs.


Asunto(s)
Células Dendríticas/inmunología , Monocitos/inmunología , Enfermedades de Inmunodeficiencia Primaria/genética , Enfermedades de Inmunodeficiencia Primaria/inmunología , Factor de Transcripción STAT3/genética , Adolescente , Adulto , Diferenciación Celular/genética , Niño , Femenino , Proteínas Ligadas a GPI/inmunología , Mutación con Ganancia de Función , Humanos , Masculino , Persona de Mediana Edad , Receptores de IgG/inmunología , Trombomodulina/inmunología
19.
Reprod Health ; 20(1): 147, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794365

RESUMEN

AIMS: To identify and synthesize the evidence regarding the facilitators and barriers relating to birthing pool use from organizational and multi-professional perspectives. DESIGN: A systematic integrated mixed methods review was conducted. DATA SOURCES: MEDLINE, CINAHL, PsychINFO, EMCARE, PROQUEST and Web of Science databases were searched in April 2021, March 2022 and April 2024. We cross-referenced with Google Scholar and undertook reference list searches. REVIEW METHODS: Data were extracted from studies meeting the inclusion criteria. Barriers and facilitators to birthing pool use were mapped and integrated into descriptive statements further synthesized to develop overarching themes. RESULTS: Thirty seven articles (29 studies) were included-quantitative (12), qualitative (8), mixed methods (7), and audits (2), from 12 countries. These included the views of 9,082 multi-professionals (midwives, nurses, obstetricians, neonatologists, students, physicians, maternity support workers, doulas and childbirth educators). Additionally, 285 institutional policies or guidelines were included over 9 papers and 1 economic evaluation. Five themes were generated: The paradox of prescriptiveness, The experienced but elusive practitioner, Advocacy and tensions, Trust or Trepidation and It's your choice, but only if it is a choice. These revealed when personal, contextual, and infrastructural factors were aligned and directed towards the support of birth pool use, birthing pool use was a genuine option. Conversely, the more barriers that women and midwives experienced, the less likely it was a viable option, reducing choice and access to safe analgesia. CONCLUSION: The findings demonstrated a paradoxical reality of water immersion with each of the five themes detailing how the "swing" within these factors directly affected whether birthing pool use was facilitated or inhibited.


Asunto(s)
Partería , Médicos , Embarazo , Humanos , Femenino , Partería/educación , Parto Obstétrico , Investigación Cualitativa
20.
Am J Hum Genet ; 105(3): 549-561, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447097

RESUMEN

FOXN1 is the master regulatory gene of thymic epithelium development. FOXN1 deficiency leads to thymic aplasia, alopecia, and nail dystrophy, accounting for the nude/severe combined immunodeficiency (nu/SCID) phenotype in humans and mice. We identified several newborns with low levels of T cell receptor excision circles (TRECs) and T cell lymphopenia at birth, who carried heterozygous loss-of-function FOXN1 variants. Longitudinal analysis showed persistent T cell lymphopenia during infancy, often associated with nail dystrophy. Adult individuals with heterozygous FOXN1 variants had in most cases normal CD4+ but lower than normal CD8+ cell counts. We hypothesized a FOXN1 gene dosage effect on the function of thymic epithelial cells (TECs) and thymopoiesis and postulated that these effects would be more prominent early in life. To test this hypothesis, we analyzed TEC subset frequency and phenotype, early thymic progenitor (ETP) cell count, and expression of FOXN1 target genes (Ccl25, Cxcl12, Dll4, Scf, Psmb11, Prss16, and Cd83) in Foxn1nu/+ (nu/+) mice and age-matched wild-type (+/+) littermate controls. Both the frequency and the absolute count of ETP were significantly reduced in nu/+ mice up to 3 weeks of age. Analysis of the TEC compartment showed reduced expression of FOXN1 target genes and delayed maturation of the medullary TEC compartment in nu/+ mice. These observations establish a FOXN1 gene dosage effect on thymic function and identify FOXN1 haploinsufficiency as an important genetic determinant of T cell lymphopenia at birth.


Asunto(s)
Factores de Transcripción Forkhead/genética , Heterocigoto , Linfopenia/genética , Linfocitos T/metabolismo , Timo/citología , Adulto , Anciano , Animales , Preescolar , Femenino , Factores de Transcripción Forkhead/fisiología , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Ratones SCID , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA