Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
2.
Cereb Cortex ; 25(10): 3420-33, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25037920

RESUMEN

The thalamus plays important roles as a relay station for sensory information in the central nervous system (CNS). Although thalamic glial cells participate in this activity, little is known about their properties. In this study, we characterized the formation of coupled networks between astrocytes and oligodendrocytes in the murine ventrobasal thalamus and compared these properties with those in the hippocampus and cortex. Biocytin filling of individual astrocytes or oligodendrocytes revealed large panglial networks in all 3 gray matter regions. Combined analyses of mice with cell type-specific deletion of connexins (Cxs), semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and western blotting showed that Cx30 is the dominant astrocytic Cx in the thalamus. Many thalamic astrocytes even lack expression of Cx43, while in the hippocampus astrocytic coupling is dominated by Cx43. Deletion of Cx30 and Cx47 led to complete loss of panglial coupling, which was restored when one allele of either Cxs was present. Immunohistochemistry revealed a unique antigen profile of thalamic glia and identified an intermediate cell type expressing both Olig2 and Cx43. Our findings further the emerging concept of glial heterogeneity across brain regions.


Asunto(s)
Astrocitos/metabolismo , Conexina 43/metabolismo , Conexinas/metabolismo , Hipocampo/metabolismo , Neocórtex/metabolismo , Oligodendroglía/metabolismo , Tálamo/metabolismo , Animales , Conexina 30 , Femenino , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Neocórtex/citología , Red Nerviosa/citología , Red Nerviosa/metabolismo , Tálamo/citología
3.
J Neurosci ; 33(9): 3780-5, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23447590

RESUMEN

Tonic inhibitory GABA(A) receptor-mediated currents are observed in numerous cell types in the CNS, including thalamocortical neurons of the ventrobasal thalamus, dentate gyrus granule cells, and cerebellar granule cells. Here we show that in rat brain slices, activation of postsynaptic GABA(B) receptors enhances the magnitude of the tonic GABA(A) current recorded in these cell types via a pathway involving G G proteins, adenylate cyclase, and cAMP-dependent protein kinase. Using a combination of pharmacology and knockout mice, we show that this pathway is independent of potassium channels or GABA transporters. Furthermore, the enhancement in tonic current is sufficient to significantly alter the excitability of thalamocortical neurons. These results demonstrate for the first time a postsynaptic crosstalk between GABA(B) and GABA(A) receptors.


Asunto(s)
Encéfalo/citología , Neuronas/fisiología , Receptores de GABA-A/metabolismo , Receptores de GABA-B/fisiología , Sinapsis/fisiología , Adenina/análogos & derivados , Adenina/farmacología , Animales , Biofisica , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Interacciones Farmacológicas , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Femenino , GABAérgicos/farmacología , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/farmacología , Técnicas In Vitro , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores de GABA-A/deficiencia , Receptores de GABA-B/deficiencia , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Bloqueadores de los Canales de Sodio/farmacología , Sinapsis/efectos de los fármacos , Tetrodotoxina/farmacología , Tionucleótidos/farmacología
4.
J Neurosci ; 31(23): 8669-80, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21653871

RESUMEN

Metabotropic glutamate receptors (mGluRs) play a crucial role in regulation of phasic inhibition within the visual thalamus. Here we demonstrate that mGluR-dependent modulation of interneuron GABA release results in dynamic changes in extrasynaptic GABA(A) receptor (eGABA(A)R)-dependent tonic inhibition in thalamocortical (TC) neurons of the rat dorsal lateral geniculate nucleus (dLGN). Application of the group I selective mGluR agonist dihydroxyphenylglycine produces a concentration-dependent enhancement of both IPSC frequency and tonic GABA(A) current (I(GABA)tonic) that is due to activation of both mGluR1a and mGluR5 subtypes. In contrast, group II/III mGluR activation decreases both IPSC frequency and I(GABA)tonic amplitude. Using knock-out mice, we show that the mGluR-dependent modulation of I(GABA)tonic is dependent upon expression of δ-subunit containing eGABA(A)Rs. Furthermore, unlike the dLGN, no mGluR-dependent modulation of I(GABA)tonic is present in TC neurons of the somatosensory ventrobasal thalamus, which lacks GABAergic interneurons. In the dLGN, enhancement of IPSC frequency and I(GABA)tonic by group I mGluRs is not action potential dependent, being insensitive to TTX, but is abolished by the L-type Ca(2+) channel blocker nimodipine. These results indicate selective mGluR-dependent modulation of dendrodendritic GABA release from F2-type terminals on interneuron dendrites and demonstrate for the first time the presence of eGABA(A)Rs on TC neuron dendritic elements that participate in "triadic" circuitry within the dLGN. These findings present a plausible novel mechanism for visual contrast gain at the thalamic level and shed new light upon the potential role of glial ensheathment of synaptic triads within the dLGN.


Asunto(s)
Interneuronas/fisiología , Inhibición Neural/fisiología , Receptores de GABA-A/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Tálamo/fisiología , Vías Visuales/fisiología , Potenciales de Acción/fisiología , Animales , Electrofisiología , Potenciales Postsinápticos Inhibidores/fisiología , Ratas , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo
5.
Eur J Neurosci ; 33(8): 1471-82, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21395866

RESUMEN

The rodent ventrobasal (VB) thalamus contains a relatively uniform population of thalamocortical (TC) neurons that receive glutamatergic input from the vibrissae and the somatosensory cortex, and inhibitory input from the nucleus reticularis thalami (nRT). In this study we describe γ-aminobutyric acid (GABA)(A) receptor-dependent slow outward currents (SOCs) in TC neurons that are distinct from fast inhibitory postsynaptic currents (IPSCs) and tonic currents. SOCs occurred spontaneously or could be evoked by hypo-osmotic stimulus, and were not blocked by tetrodotoxin, removal of extracellular Ca(2+) or bafilomycin A1, indicating a non-synaptic, non-vesicular GABA origin. SOCs were more common in TC neurons of the VB compared with the dorsal lateral geniculate nucleus, and were rarely observed in nRT neurons, whilst SOC frequency in the VB increased with age. Application of THIP, a selective agonist at δ-subunit-containing GABA(A) receptors, occluded SOCs, whereas the benzodiazepine site inverse agonist ß-CCB had no effect, but did inhibit spontaneous and evoked IPSCs. In addition, the occurrence of SOCs was reduced in mice lacking the δ-subunit, and their kinetics were also altered. The anti-epileptic drug vigabatrin increased SOC frequency in a time-dependent manner, but this effect was not due to reversal of GABA transporters. Together, these data indicate that SOCs in TC neurons arise from astrocytic GABA release, and are mediated by δ-subunit-containing GABA(A) receptors. Furthermore, these findings suggest that the therapeutic action of vigabatrin may occur through the augmentation of this astrocyte-neuron interaction, and highlight the importance of glial cells in CNS (patho) physiology.


Asunto(s)
Receptores de GABA-A/metabolismo , Transducción de Señal , Tálamo/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Femenino , GABAérgicos/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores de GABA-A/genética , Tálamo/citología , Vigabatrin/metabolismo
6.
J Neurosci ; 29(41): 12757-63, 2009 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19828786

RESUMEN

GABA is the principal inhibitory neurotransmitter in the CNS and acts via GABA(A) and GABA(B) receptors. Recently, a novel form of GABA(A) receptor-mediated inhibition, termed "tonic" inhibition, has been described. Whereas synaptic GABA(A) receptors underlie classical "phasic" GABA(A) receptor-mediated inhibition (inhibitory postsynaptic currents), tonic GABA(A) receptor-mediated inhibition results from the activation of extrasynaptic receptors by low concentrations of ambient GABA. Extrasynaptic GABA(A) receptors are composed of receptor subunits that convey biophysical properties ideally suited to the generation of persistent inhibition and are pharmacologically and functionally distinct from their synaptic counterparts. This mini-symposium review highlights ongoing work examining the properties of recombinant and native extrasynaptic GABA(A) receptors and their preferential targeting by endogenous and clinically relevant agents. In addition, it emphasizes the important role of extrasynaptic GABA(A) receptors in GABAergic inhibition throughout the CNS and identifies them as a major player in both physiological and pathophysiological processes.


Asunto(s)
Sistema Nervioso Central/fisiología , Inhibición Neural/fisiología , Terminales Presinápticos/metabolismo , Receptores de GABA-A/fisiología , Animales , Fenómenos Biofísicos/efectos de los fármacos , Fenómenos Biofísicos/fisiología , Sistema Nervioso Central/efectos de los fármacos , Femenino , Humanos , Masculino , Inhibición Neural/efectos de los fármacos , Embarazo , Terminales Presinápticos/efectos de los fármacos , Subunidades de Proteína/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
7.
Neuron ; 33(6): 947-58, 2002 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-11906700

RESUMEN

The slow (<1 Hz) rhythm is a defining feature of the electroencephalogram during sleep. Since cortical circuits can generate this rhythm in isolation, it is assumed that the accompanying slow oscillation in thalamocortical (TC) neurons is largely a passive reflection of neocortical activity. Here we show, however, that by activating the metabotropic glutamate receptor (mGluR), mGluR1a, cortical inputs can recruit intricate cellular mechanisms that enable the generation of an intrinsic slow oscillation in TC neurons in vitro with identical properties to those observed in vivo. These mechanisms rely on the "window" component of the T-type Ca(2+) current and a Ca(2+)-activated, nonselective cation current. These results suggest an active role for the thalamus in shaping the slow (<1 Hz) sleep rhythm.


Asunto(s)
Ritmo Delta , Cuerpos Geniculados/metabolismo , Neuronas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Tálamo/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Gatos , Cicloleucina/análogos & derivados , Cicloleucina/farmacología , Electroencefalografía , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Cuerpos Geniculados/citología , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Técnicas de Placa-Clamp , Sueño/fisiología , Tálamo/citología
8.
Neuron ; 42(2): 253-68, 2004 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-15091341

RESUMEN

In relaxed wakefulness, the EEG exhibits robust rhythms in the alpha band (8-13 Hz), which decelerate to theta (approximately 2-7 Hz) frequencies during early sleep. In animal models, these rhythms occur coherently with synchronized activity in the thalamus. However, the mechanisms of this thalamic activity are unknown. Here we show that, in slices of the lateral geniculate nucleus maintained in vitro, activation of the metabotropic glutamate receptor (mGluR) mGluR1a induces synchronized oscillations at alpha and theta frequencies that share similarities with thalamic alpha and theta rhythms recorded in vivo. These in vitro oscillations are driven by an unusual form of burst firing that is present in a subset of thalamocortical neurons and are synchronized by gap junctions. We propose that mGluR1a-induced oscillations are a potential mechanism whereby the thalamus promotes EEG alpha and theta rhythms in the intact brain.


Asunto(s)
Potenciales de Acción/fisiología , Ritmo alfa/métodos , Sincronización Cortical/métodos , Cuerpos Geniculados/fisiología , Ritmo Teta/métodos , Animales , Gatos
9.
J Neurosci Methods ; 169(2): 290-301, 2008 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-18067972

RESUMEN

The dynamic clamp is a technique which allows the introduction of artificial conductances into living cells. Up to now, this technique has been mainly used to add small numbers of 'virtual' ion channels to real cells or to construct small hybrid neuronal circuits. In this paper we describe a prototype computer system, NeuReal, that extends the dynamic clamp technique to include (i) the attachment of artificial dendritic structures consisting of multiple compartments and (ii) the construction of large hybrid networks comprising several hundred biophysically realistic modelled neurons. NeuReal is a fully interactive system that runs on Windows XP, is written in a combination of C++ and assembler, and uses the Microsoft DirectX application programming interface (API) to achieve high-performance graphics. By using the sampling hardware-based representation of membrane potential at all stages of computation and by employing simple look-up tables, NeuReal can simulate over 1000 independent Hodgkin and Huxley type conductances in real-time on a modern personal computer (PC). In addition, whilst not being a hard real-time system, NeuReal still offers reliable performance and tolerable jitter levels up to an update rate of 50kHz. A key feature of NeuReal is that rather than being a simple dedicated dynamic clamp, it operates as a fast simulation system within which neurons can be specified as either real or simulated. We demonstrate the power of NeuReal with several example experiments and argue that it provides an effective tool for examining various aspects of neuronal function.


Asunto(s)
Dendritas/fisiología , Redes Neurales de la Computación , Algoritmos , Animales , Gatos , Gráficos por Computador , Simulación por Computador , Sinapsis Eléctricas/fisiología , Electrofisiología , Potenciales de la Membrana/fisiología , Modelos Neurológicos , Conducción Nerviosa/fisiología , Técnicas de Placa-Clamp , Programas Informáticos , Tálamo/fisiología
10.
Brain Res ; 1235: 12-20, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18602904

RESUMEN

It is now widely accepted that certain types of cognitive functions are intimately related to synchronized neuronal oscillations at both low (alpha/theta) (4-7/8-13 Hz) and high (beta/gamma) (18-35/30-70 Hz) frequencies. The thalamus is a key participant in many of these oscillations, yet the cellular mechanisms by which this participation occurs are poorly understood. Here we describe how, under appropriate conditions, thalamocortical (TC) neurons from different nuclei can exhibit a wide array of largely unrecognised intrinsic oscillatory activities at a range of cognitively-relevant frequencies. For example, both metabotropic glutamate receptor (mGluR) and muscarinic Ach receptor (mAchR) activation can cause rhythmic bursting at alpha/theta frequencies. Interestingly, key differences exist between mGluR- and mAchR-induced bursting, with the former involving extensive dendritic Ca2+ electrogenesis and being mimicked by a non-specific block of K+ channels with Ba2+, whereas the latter appears to be more reliant on proximal Na+ channels and a prominent spike afterdepolarization (ADP). This likely relates to the differential somatodendritic distribution of mGluRs and mAChRs and may have important functional consequences. We also show here that in similarity to some neocortical neurons, inhibiting large-conductance Ca2+-activated K+ channels in TC neurons can lead to fast rhythmic bursting (FRB) at approximately 40 Hz. This activity also appears to rely on a Na+ channel-dependent spike ADP and may occur in vivo during natural wakefulness. Taken together, these results show that TC neurons are considerably more flexible than generally thought and strongly endorse a role for the thalamus in promoting a range of cognitively-relevant brain rhythms.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Corteza Cerebral/fisiología , Neuronas/fisiología , Tálamo/fisiología , Animales , Humanos , Canales Iónicos/fisiología , Vías Nerviosas/fisiología , Periodicidad , Receptores de Neurotransmisores/fisiología
11.
J Neurosci ; 26(9): 2474-86, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16510726

RESUMEN

During deep sleep and anesthesia, the EEG of humans and animals exhibits a distinctive slow (<1 Hz) rhythm. In inhibitory neurons of the nucleus reticularis thalami (NRT), this rhythm is reflected as a slow (<1 Hz) oscillation of the membrane potential comprising stereotypical, recurring "up" and "down" states. Here we show that reducing the leak current through the activation of group I metabotropic glutamate receptors (mGluRs) with either trans-ACPD [(+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid] (50-100 microM) or DHPG [(S)-3,5-dihydroxyphenylglycine] (100 microM) instates an intrinsic slow oscillation in NRT neurons in vitro that is qualitatively equivalent to that observed in vivo. A slow oscillation could also be evoked by synaptically activating mGluRs on NRT neurons via the tetanic stimulation of corticothalamic fibers. Through a combination of experiments and computational modeling we show that the up state of the slow oscillation is predominantly generated by the "window" component of the T-type Ca2+ current, with an additional supportive role for a Ca2+-activated nonselective cation current. The slow oscillation is also fundamentally reliant on an Ih current and is extensively shaped by both Ca2+- and Na+-activated K+ currents. In combination with previous work in thalamocortical neurons, this study suggests that the thalamus plays an important and active role in shaping the slow (<1 Hz) rhythm during deep sleep.


Asunto(s)
Núcleos Talámicos Intralaminares/citología , Neuronas/fisiología , Periodicidad , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/efectos de la radiación , Animales , Apamina/farmacología , Cadmio/farmacología , Gatos , Simulación por Computador , Cicloleucina/análogos & derivados , Cicloleucina/farmacología , Relación Dosis-Respuesta en la Radiación , Interacciones Farmacológicas , Capacidad Eléctrica , Estimulación Eléctrica/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Técnicas In Vitro , Modelos Neurológicos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/efectos de la radiación , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Fármacos Neuroprotectores/farmacología , Níquel/farmacología , Compuestos Organofosforados/farmacología , Piridazinas/farmacología , Pirimidinas/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Factores de Tiempo
12.
Cell Calcium ; 40(2): 175-90, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16777223

RESUMEN

T-type Ca2+ channels play a number of different and pivotal roles in almost every type of neuronal oscillation expressed by thalamic neurones during non-rapid eye movement (NREM) sleep, including those underlying sleep theta waves, the K-complex and the slow (<1 Hz) sleep rhythm, sleep spindles and delta waves. In particular, the transient opening of T channels not only gives rise to the 'classical' low threshold Ca2+ potentials, and associated high frequency burst of action potentials, that are characteristically present during sleep spindles and delta waves, but also contributes to the high threshold bursts that underlie the thalamic generation of sleep theta rhythms. The persistent opening of a small fraction of T channels, i.e. I(Twindow), is responsible for the large amplitude and long lasting depolarization, or UP state, of the slow (<1 Hz) sleep oscillation in thalamic neurones. These cellular findings are in part matched by the wake-sleep phenotype of global and thalamic-selective CaV3.1 knockout mice that show a decreased amount of total NREM sleep time. T-type Ca2+ channels, therefore, constitute the single most crucial voltage-dependent conductance that permeates all activities of thalamic neurones during NREM sleep. Since I(Twindow) and high threshold bursts are not restricted to thalamic neurones, the cellular neurophysiology of T channels should now move away from the simplistic, though historically significant, view of these channels as being responsible only for low threshold Ca2+ potentials.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Fases del Sueño/fisiología , Tálamo/metabolismo , Ritmo alfa , Animales , Señalización del Calcio , Humanos , Ritmo Teta
13.
J Neurosci ; 25(50): 11553-63, 2005 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-16354913

RESUMEN

Tonic GABAA receptor-mediated inhibition is typically generated by delta subunit-containing extrasynaptic receptors. Because the delta subunit is highly expressed in the thalamus, we tested whether thalamocortical (TC) neurons of the dorsal lateral geniculate nucleus (dLGN) and ventrobasal complex exhibit tonic inhibition. Focal application of gabazine (GBZ) (50 microM) revealed the presence of a 20 pA tonic current in 75 and 63% of TC neurons from both nuclei, respectively. No tonic current was observed in GABAergic neurons of the nucleus reticularis thalami (NRT). Bath application of 1 microM GABA increased tonic current amplitude to approximately 70 pA in 100% of TC neurons, but it was still not observed in NRT neurons. In dLGN TC neurons, the tonic current was sensitive to low concentrations of the delta subunit-specific receptor agonists allotetrahydrodeoxycorticosterone (100 nM) and 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol (THIP) (100 nM) but insensitive to the benzodiazepine flurazepam (5 microM). Bath application of low concentrations of GBZ (25-200 nM) preferentially blocked the tonic current, whereas phasic synaptic inhibition was primarily maintained. Under intracellular current-clamp conditions, the preferential block of the tonic current with GBZ led to a small depolarization and increase in input resistance. Using extracellular single-unit recordings, block of the tonic current caused the cessation of low-threshold burst firing and promoted tonic firing. Enhancement of the tonic current by THIP hyperpolarized TC neurons and promoted burst firing. Thus, tonic current in TC neurons generates an inhibitory tone. Its modulation contributes to the shift between different firing modes, promotes the transition between different behavioral states, and predisposes to absence seizures.


Asunto(s)
Inhibición Neural/fisiología , Neuronas/fisiología , Receptores de GABA-A/fisiología , Núcleos Talámicos/fisiología , Animales , Femenino , Antagonistas del GABA/farmacología , Agonistas de Receptores de GABA-A , Técnicas In Vitro , Masculino , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Piridazinas/farmacología , Ratas , Ratas Wistar , Núcleos Talámicos/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología , Ácido gamma-Aminobutírico/fisiología
14.
PLoS One ; 9(5): e96480, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24879444

RESUMEN

Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.


Asunto(s)
Técnica Delphi , Formulación de Políticas , Política Pública/tendencias , Ciencia/tendencias , Tecnología/tendencias , Cambio Climático , Conservación de los Recursos Naturales , Toma de Decisiones , Atención a la Salud , Demografía , Ambiente , Gobierno , Humanos , Invenciones , Esperanza de Vida , Política , Dinámica Poblacional , Sector Privado , Asignación de Recursos
15.
PLoS One ; 7(3): e31824, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22427809

RESUMEN

The need for policy makers to understand science and for scientists to understand policy processes is widely recognised. However, the science-policy relationship is sometimes difficult and occasionally dysfunctional; it is also increasingly visible, because it must deal with contentious issues, or itself becomes a matter of public controversy, or both. We suggest that identifying key unanswered questions on the relationship between science and policy will catalyse and focus research in this field. To identify these questions, a collaborative procedure was employed with 52 participants selected to cover a wide range of experience in both science and policy, including people from government, non-governmental organisations, academia and industry. These participants consulted with colleagues and submitted 239 questions. An initial round of voting was followed by a workshop in which 40 of the most important questions were identified by further discussion and voting. The resulting list includes questions about the effectiveness of science-based decision-making structures; the nature and legitimacy of expertise; the consequences of changes such as increasing transparency; choices among different sources of evidence; the implications of new means of characterising and representing uncertainties; and ways in which policy and political processes affect what counts as authoritative evidence. We expect this exercise to identify important theoretical questions and to help improve the mutual understanding and effectiveness of those working at the interface of science and policy.


Asunto(s)
Comunicación Interdisciplinaria , Política Pública/tendencias , Proyectos de Investigación , Toma de Decisiones en la Organización , Inglaterra
16.
Adv Pharmacol Sci ; 2011: 790590, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21912539

RESUMEN

It is well established that impaired GABAergic inhibition within neuronal networks can lead to hypersynchronous firing patterns that are the typical cellular hallmark of convulsive epileptic seizures. However, recent findings have highlighted that a pathological enhancement of GABAergic signalling within thalamocortical circuits is a necessary and sufficient condition for nonconvulsive typical absence seizure genesis. In particular, increased activation of extrasynaptic GABA(A) receptors (eGABA(A)R) and augmented "tonic" GABA(A) inhibition in thalamocortical neurons have been demonstrated across a range of genetic and pharmacological models of absence epilepsy. Moreover, evidence from monogenic mouse models (stargazer/lethargic) and the polygenic Genetic Absence Epilepsy Rats from Strasbourg (GAERS) indicate that the mechanism underlying eGABA(A)R gain of function is nonneuronal in nature and results from a deficiency in astrocytic GABA uptake through the GAT-1 transporter. These results challenge the existing theory that typical absence seizures are underpinned by a widespread loss of GABAergic function in thalamocortical circuits and illustrate a vital role for astrocytes in the pathology of typical absence epilepsy. Moreover, they explain why pharmacological agents that enhance GABA receptor function can initiate or exacerbate absence seizures and suggest a potential therapeutic role for inverse agonists at eGABA(A)Rs in absence epilepsy.

17.
Epilepsy Res ; 97(3): 283-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21889315

RESUMEN

Absence seizures appear to be initiated in a putative cortical 'initiation site' by the expression of medium-amplitude 5-9Hz oscillations, which may in part be due to a decreased phasic GABA(A) receptor function. These oscillations rapidly spread to other cortical areas and to the thalamus, leading to fully developed generalized spike and wave discharges. In thalamocortical neurons of genetic models, phasic GABA(A) inhibition is either unchanged or increased, whereas tonic GABA(A) inhibition is increased both in genetic and pharmacological models. This enhanced tonic inhibition is required for absence seizure generation, and in genetic models it results from a malfunction in the astrocytic GABA transporter GAT-1. Contradictory results from inbred and transgenic animals still do not allow us to draw firm conclusions on changes in phasic GABA(A) inhibition in the GABAergic neurons of the nucleus reticularis thalami. Mathematical modelling may enhance our understanding of these competing hypotheses, by permitting investigations of their mechanistic aspects, hence enabling a greater understanding of the processes underlying seizure generation and evolution.


Asunto(s)
Epilepsia Tipo Ausencia/genética , Epilepsia Tipo Ausencia/fisiopatología , Receptores de GABA-A/genética , Ritmo alfa/genética , Animales , Animales Modificados Genéticamente , Simulación por Computador , Electroencefalografía , GABAérgicos/farmacología , Humanos , Modelos Neurológicos , Inhibición Neural/fisiología , Receptores de GABA-A/metabolismo
18.
PLoS One ; 6(4): e19021, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21526163

RESUMEN

Aberrant γ-aminobutyric acid type A (GABA(A)) receptor-mediated inhibition in cortico-thalamic networks remains an attractive mechanism for typical absence seizure genesis. Using the whole-cell patch clamp technique we examined 'phasic' and 'tonic' GABA(A) inhibition in thalamocortical neurons of somatosensory (ventrobasal, VB) thalamus, nucleus reticularis thalami (NRT) neurons, and layer 5/6 pyramidal neurons of the somatosensory (barrel) cortex of succinic semialdehyde dehydrogenase (SSADH) knock-out (SSADH(-/-)) mice that replicate human SSADH deficiency and exhibit typical absence seizures. We found increased sIPSC frequency in both VB and NRT neurons and larger sIPSC amplitude in VB neurons of SSADH(-/-) mice compared to wild-type animals, demonstrating an increase in total phasic inhibition in thalamus of SSADH(-/-) mice. mIPSCs in both VB and NRT neurons were no different between genotypes, although there remained a trend toward more events in SSADH(-/-) mice. In cortical layer 5/6 pyramidal neurons, sIPSCs were fewer but larger in SSADH(-/-) mice, a feature retained by mIPSCs. Tonic currents were larger in both thalamocortical neurons and layer 5/6 pyramidal neurons from SSADH(-/-) mice compared to WTs. These data show that enhanced, rather than compromised, GABA(A) receptor-mediated inhibition occurs in cortico-thalamic networks of SSADH(-/-) mice. In agreement with previous studies, GABA(A) receptor-mediated inhibitory gain-of-function may be a common feature in models of typical absence seizures, and could be of pathological importance in patients with SSADH deficiency.


Asunto(s)
Corteza Cerebral/fisiología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Receptores de GABA-A/metabolismo , Succionato-Semialdehído Deshidrogenasa/deficiencia , Tálamo/fisiología , Animales , Corteza Cerebral/efectos de los fármacos , Femenino , Humanos , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Masculino , Ratones , Red Nerviosa/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ácidos Fosfínicos/farmacología , Propanolaminas/farmacología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Receptores de GABA-B/metabolismo , Succionato-Semialdehído Deshidrogenasa/metabolismo , Tálamo/efectos de los fármacos
19.
Nat Med ; 15(12): 1392-8, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19966779

RESUMEN

The cellular mechanisms underlying typical absence seizures, which characterize various idiopathic generalized epilepsies, are not fully understood, but impaired gamma-aminobutyric acid (GABA)-ergic inhibition remains an attractive hypothesis. In contrast, we show here that extrasynaptic GABA(A) receptor-dependent 'tonic' inhibition is increased in thalamocortical neurons from diverse genetic and pharmacological models of absence seizures. Increased tonic inhibition is due to compromised GABA uptake by the GABA transporter GAT-1 in the genetic models tested, and GAT-1 is crucial in governing seizure genesis. Extrasynaptic GABA(A) receptors are a requirement for seizures in two of the best characterized models of absence epilepsy, and the selective activation of thalamic extrasynaptic GABA(A) receptors is sufficient to elicit both electrographic and behavioral correlates of seizures in normal rats. These results identify an apparently common cellular pathology in typical absence seizures that may have epileptogenic importance and highlight potential therapeutic targets for the treatment of absence epilepsy.


Asunto(s)
Epilepsia Tipo Ausencia/metabolismo , Antagonistas de Receptores de GABA-A , Animales , Epilepsia Tipo Ausencia/fisiopatología , Proteínas Transportadoras de GABA en la Membrana Plasmática/fisiología , Ratas , Receptores de GABA-A/fisiología
20.
J Physiol ; 562(Pt 1): 121-9, 2005 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15498803

RESUMEN

All three forms of recombinant low voltage-activated T-type Ca(2)(+) channels (Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3) exhibit a small, though clearly evident, window T-type Ca(2)(+) current (I(Twindow)) which is also present in native channels from different neuronal types. In thalamocortical (TC) and nucleus reticularis thalami (NRT) neurones, and possibly in neocortical cells, an I(Twindow)-mediated bistability is the key cellular mechanism underlying the expression of the slow (< 1 Hz) sleep oscillation, one of the fundamental EEG rhythms of non-REM sleep. As the I(Twindow)-mediated bistability may also represent one of the cellular mechanisms underlying the expression of high frequency burst firing in awake conditions, I(Twindow) is of critical importance in neuronal population dynamics associated with different behavioural states.


Asunto(s)
Conducta Animal/fisiología , Encéfalo/fisiología , Canales de Calcio Tipo T/fisiología , Animales , Fenómenos Biofísicos , Biofisica , Electrofisiología , Humanos , Potenciales de la Membrana/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA