Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Brain Behav Immun ; 122: 266-278, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142424

RESUMEN

Anti-contactin associated protein receptor 2 (CASPR2) encephalitis is a severe autoimmune encephalitis with a variable clinical phenotype including behavioral abnormalities, cognitive decline, epileptic seizures, peripheral nerve hyperexcitability and neuropathic pain. The detailed mechanisms of how CASPR2 autoantibodies lead to synaptic dysfunction and clinical symptoms are largely unknown. Aiming for analyses from the molecular to the clinical level, we isolated antibody-secreting cells from the cerebrospinal fluid of two patients with CASPR2 encephalitis. From these we cloned four anti-CASPR2 human monoclonal autoantibodies (mAbs) with strong binding to brain and peripheral nerves. All were highly hypermutated and mainly of the IgG4 subclass. Mutagenesis studies determined selective binding to the discoidin domain of CASPR2. Surface plasmon resonance revealed affinities with dissociation constants KD in the pico- to nanomolar range. CASPR2 mAbs interrupted the interaction of CASPR2 with its binding partner contactin 2 in vitro and were internalized after binding to CASPR2-expressing cells. Electrophysiological recordings of rat hippocampal slices after stereotactic injection of CASPR2 mAbs showed characteristic afterpotentials following electrical stimulation. In vivo experiments with intracerebroventricular administration of human CASPR2 mAbs into mice and rats showed EEG-recorded brain hyperexcitability but no spontaneous recurrent seizures. Behavioral assessment of infused mice showed a subtle clinical phenotype, mainly affecting sociability. Mouse brain MRI exhibited markedly reduced resting-state functional connectivity without short-term structural changes. Together, the experimental data support the direct pathogenicity of CASPR2 autoantibodies. The minimally invasive EEG and MRI techniques applied here may serve as novel objective, quantifiable tools for improved animal models, in particular for subtle neuropsychiatric phenotypes or repeated measurements.

2.
Brain Behav Immun ; 117: 399-411, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38309639

RESUMEN

BACKGROUND: Autoantibodies against the potassium voltage-gated channel subfamily A member 2 (KCNA2) have been described in a few cases of neuropsychiatric disorders, but their diagnostic and pathophysiological role is currently unknown, imposing challenges to medical practice. DESIGN / METHODS: We retrospectively collected comprehensive clinical and paraclinical data of 35 patients with KCNA2 IgG autoantibodies detected in cell-based and tissue-based assays. Patients' sera and cerebrospinal fluid (CSF) were used for characterization of the antigen, clinical-serological correlations, and determination of IgG subclasses. RESULTS: KCNA2 autoantibody-positive patients (n = 35, median age at disease onset of 65 years, range of 16-83 years, 74 % male) mostly presented with cognitive impairment and/or epileptic seizures but also ataxia, gait disorder and personality changes. Serum autoantibodies belonged to IgG3 and IgG1 subclasses and titers ranged from 1:32 to 1:10,000. KCNA2 IgG was found in the CSF of 8/21 (38 %) patients and in the serum of 4/96 (4.2 %) healthy blood donors. KCNA2 autoantibodies bound to characteristic anatomical areas in the cerebellum and hippocampus of mammalian brain and juxtaparanodal regions of peripheral nerves but reacted exclusively with intracellular epitopes. A subset of four KCNA2 autoantibody-positive patients responded markedly to immunotherapy alongside with conversion to seronegativity, in particular those presenting an autoimmune encephalitis phenotype and receiving early immunotherapy. An available brain biopsy showed strong immune cell invasion. KCNA2 autoantibodies occurred in less than 10 % in association with an underlying tumor. CONCLUSION: Our data suggest that KCNA2 autoimmunity is clinically heterogeneous. Future studies should determine whether KCNA2 autoantibodies are directly pathogenic or develop secondarily. Early immunotherapy should be considered, in particular if autoantibodies occur in CSF or if clinical or diagnostic findings suggest ongoing inflammation. Suspicious clinical phenotypes include autoimmune encephalitis, atypical dementia, new-onset epilepsy and unexplained epileptic seizures.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Autoinmunidad , Encefalitis , Enfermedad de Hashimoto , Animales , Humanos , Masculino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Femenino , Estudios Retrospectivos , Autoanticuerpos , Convulsiones , Mamíferos , Canal de Potasio Kv.1.2
3.
Front Cell Neurosci ; 17: 1077204, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36794262

RESUMEN

Introduction: The antibody repertoire from CSF-derived antibody-secreting cells and memory B-cells in patients with encephalitis contains a considerable number of antibodies that do not target the disease-defining autoantigen such as the GABA or NMDA receptors. This study focuses on the functional relevance of autoantibodies to brain blood vessels in patients with GABAA and NMDA receptor encephalitis. Methods: We tested 149 human monoclonal IgG antibodies from the cerebrospinal fluid of six patients with different forms of autoimmune encephalitis on murine brain sections for reactivity to blood vessels using immunohistochemistry. Positive candidates were tested for reactivity with purified brain blood vessels, effects on transendothelial electrical resistance (TEER), and expression of tight junction proteins as well as gene regulation using human brain microvascular endothelial hCMEC/D3 cells as in vitro blood-brain barrier model. One blood-vessel reactive antibody was infused intrathecally by pump injection in mice to study in vivo binding and effects on tight junction proteins such as Occludin. Target protein identification was addressed using transfected HEK293 cells. Results: Six antibodies reacted with brain blood vessels, three were from the same patient with GABAAR encephalitis, and the other three were from different patients with NMDAR encephalitis. One antibody from an NMDAR encephalitis patient, mAb 011-138, also reacted with cerebellar Purkinje cells. In this case, treatment of hCMEC/D3 cells resulted in decreased TEER, reduced Occludin expression, and mRNA levels. Functional relevance in vivo was confirmed as Occludin downregulation was observed in mAb 011-138-infused animals. Unconventional Myosin-X was identified as a novel autoimmune target for this antibody. Discussion: We conclude that autoantibodies to blood vessels occur in autoimmune encephalitis patients and might contribute to a disruption of the blood-brain barrier thereby suggesting a potential pathophysiological relevance of these antibodies.

4.
Brain Behav Immun Health ; 33: 100678, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37692096

RESUMEN

Anti-neuronal autoantibodies can be transplacentally transferred during pregnancy and may cause detrimental effects on fetal development. It is unclear whether autoantibodies against synapsin-I, one of the most abundant synaptic proteins, are associated with developmental abnormalities in humans. We recruited a cohort of 263 pregnant women and detected serum synapsin-I IgG autoantibodies in 13.3% using cell-based assays. Seropositivity was strongly associated with abnormalities of fetal development including structural defects, intrauterine growth retardation, amniotic fluid disorders and neuropsychiatric developmental diseases in previous children (odds ratios of 3-6.5). Autoantibodies reached the fetal circulation and were mainly of IgG1/IgG3 subclasses. They bound to conformational and linear synapsin-I epitopes, five distinct epitopes were identified using peptide microarrays. The findings indicate that synapsin-I autoantibodies may be clinically useful biomarkers or even directly participate in the disease process of neurodevelopmental disorders, thus being potentially amenable to antibody-targeting interventional strategies in the future.

5.
J Exp Med ; 218(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34546336

RESUMEN

Autoantibodies targeting the GABAA receptor (GABAAR) hallmark an autoimmune encephalitis presenting with frequent seizures and psychomotor abnormalities. Their pathogenic role is still not well-defined, given the common overlap with further autoantibodies and the lack of patient-derived mAbs. Five GABAAR mAbs from cerebrospinal fluid cells bound to various epitopes involving the α1 and γ2 receptor subunits, with variable binding strength and partial competition. mAbs selectively reduced GABAergic currents in neuronal cultures without causing receptor internalization. Cerebroventricular infusion of GABAAR mAbs and Fab fragments into rodents induced a severe phenotype with seizures and increased mortality, reminiscent of encephalitis patients' symptoms. Our results demonstrate direct pathogenicity of autoantibodies on GABAARs independent of Fc-mediated effector functions and provide an animal model for GABAAR encephalitis. They further provide the scientific rationale for clinical treatments using antibody depletion and can serve as tools for the development of antibody-selective immunotherapies.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Autoanticuerpos/inmunología , Encefalitis/inmunología , Epilepsia/inmunología , Receptores de GABA-A/inmunología , Convulsiones/inmunología , Animales , Autoantígenos/inmunología , Células Cultivadas , Células HEK293 , Hipocampo/inmunología , Humanos , Ratones , Neuronas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA