Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Genet Med ; 26(3): 101035, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38059438

RESUMEN

PURPOSE: Clinically ascertained variants are under-utilized in neurodevelopmental disorder research. We established the Brain Gene Registry (BGR) to coregister clinically identified variants in putative brain genes with participant phenotypes. Here, we report 179 genetic variants in the first 179 BGR registrants and analyze the proportion that were novel to ClinVar at the time of entry and those that were absent in other disease databases. METHODS: From 10 academically affiliated institutions, 179 individuals with 179 variants were enrolled into the BGR. Variants were cross-referenced for previous presence in ClinVar and for presence in 6 other genetic databases. RESULTS: Of 179 variants in 76 genes, 76 (42.5%) were novel to ClinVar, and 62 (34.6%) were absent from all databases analyzed. Of the 103 variants present in ClinVar, 37 (35.9%) were uncertain (ClinVar aggregate classification of variant of uncertain significance or conflicting classifications). For 5 variants, the aggregate ClinVar classification was inconsistent with the interpretation from the BGR site-provided classification. CONCLUSION: A significant proportion of clinical variants that are novel or uncertain are not shared, limiting the evidence base for new gene-disease relationships. Registration of paired clinical genetic test results with phenotype has the potential to advance knowledge of the relationships between genes and neurodevelopmental disorders.


Asunto(s)
Bases de Datos Genéticas , Variación Genética , Humanos , Variación Genética/genética , Pruebas Genéticas/métodos , Fenotipo , Encéfalo
2.
Genes (Basel) ; 15(4)2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38674358

RESUMEN

Pathogenic ASH1L variants have been reported in probands with broad phenotypic presentations, including intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, seizures, congenital anomalies, and other skeletal, muscular, and sleep differences. Here, we review previously published individuals with pathogenic ASH1L variants and report three further probands with novel ASH1L variants and previously unreported phenotypic features, including mixed receptive language disorder and gait disturbances. These novel data from the Brain Gene Registry, an accessible repository of clinically derived genotypic and phenotypic data, have allowed for the expansion of the phenotypic and genotypic spectrum of this condition.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Trastornos del Neurodesarrollo , Fenotipo , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Masculino , N-Metiltransferasa de Histona-Lisina/genética , Femenino , Niño , Genotipo , Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Factores de Transcripción/genética , Preescolar , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Mutación , Adolescente
3.
Artículo en Inglés | MEDLINE | ID: mdl-38663031

RESUMEN

Clinical genetic laboratories must have access to clinically validated biomedical data for precision medicine. A lack of accessibility, normalized structure, and consistency in evaluation complicates interpretation of disease causality, resulting in confusion in assessing the clinical validity of genes and genetic variants for diagnosis. A key goal of the Clinical Genome Resource (ClinGen) is to fill the knowledge gap concerning the strength of evidence supporting the role of a gene in a monogenic disease, which is achieved through a process known as Gene-Disease Validity curation. Here we review the work of ClinGen in developing a curation infrastructure that supports the standardization, harmonization, and dissemination of Gene-Disease Validity data through the creation of frameworks and the utilization of common data standards. This infrastructure is based on several applications, including the ClinGen GeneTracker, Gene Curation Interface, Data Exchange, GeneGraph, and website.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA