Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oecologia ; 201(4): 1089-1107, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36944897

RESUMEN

Tropical forests are threatened by anthropogenic activities such as conversion into agricultural land, logging and fires. Land-use change and disturbance affect ecosystems not only aboveground, but also belowground including the ecosystems' carbon and nitrogen cycle. We studied the impact of different types of land-use change (intensive and traditional agroforestry, logging) and disturbance by fire on fine root biomass, dynamics, morphology, and related C and N fluxes to the soil via fine root litter across different ecosystems at different elevational zones at Mt. Kilimanjaro (Tanzania). We found a decrease in fine root biomass (80-90%), production (50%), and C and N fluxes to the soil via fine root litter (60-80%) at all elevation zones. The traditional agroforestry 'Chagga homegardens' (lower montane zone) showed enhanced fine root turnover rates, higher values of acquisitive root morphological traits, but similar stand fine root production, C and N fluxes compared to the natural forest. The decrease of C and N fluxes with forest disturbance was particularly strong at the upper montane zone (60 and 80% decrease, respectively), where several patches of Podocarpus forest had been disturbed by fire in the previous years. We conclude that changes on species composition, stand structure and land management practices resulting from land-use change and disturbance have a strong impact on the fine root system, modifying fine root biomass, production and the C and N supply to the soil from fine root litter, which strongly affects the ecosystems' C and N cycle in those East African tropical forest ecosystems.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Biomasa , Tanzanía , Nitrógeno/análisis , Bosques
2.
Plants (Basel) ; 12(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37896031

RESUMEN

Roads have the potential to alter local environmental conditions, such as the availability of water and nutrients, and rapidly create suitable habitats for the establishment of both native and non-native plant species, transforming the ecosystems. This is a challenge in Timanfaya National Park and Los Volcanes Natural Park on Lanzarote Island, protected areas that have experienced primary succession after recent volcanic eruptions. In arid ecosystems, changes in abiotic conditions along roadsides might facilitate colonization and plant growth. We analyzed the effect of roads and road type on plant species composition and richness at a spatiotemporal scale. Vascular plant species were systematically recorded at three distances from the road edge on both sides, across fourteen zones in the wet and dry seasons, for three years. Results showed that there were slight differences on species composition depending on the distance to the road edge, as well as on the zones. Species richness was also determined by the interaction of the position, zones, and season, being higher at the road edge. Furthermore, zones with higher traffic intensity showed a higher presence of both native and non-native species. This study highlights the importance of the awareness about the road impacts on species composition by enhancing the colonization capacity of species while facilitating the entry of invasive ones. Good management practices regarding infrastructures in natural protected areas are crucial for the conservation of their unique flora, landscapes, and natural succession processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA