Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biomater Adv ; 155: 213681, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37944448

RESUMEN

Human adenoviruses represent attractive candidates for the design of cancer gene therapy vectors. Modification of adenovirus tropism by incorporating a targeting ligand into the adenovirus capsid proteins allows retargeting of adenovirus towards the cells of interest. Human adenovirus type 5 (HAdV-C5) bearing NGR containing peptide (CNGRCVSGCAGRC) inserted into the fiber (AdFNGR) or the hexon (AdHNGR) protein demonstrated an increased transduction of endothelial cells showing expression of aminopeptidase N, also known as CD13, and αvß3 integrin both present on tumor vasculature, indicating that NGR-bearing adenoviruses could be used as tools for anti-angiogenic cancer therapy. Here we investigated how AdFNGR and AdHNGR infect cells lacking HAdV-C5 primary receptor, coxsackie and adenovirus receptor, and we showed that both AFNGR and AdHNGR enter cells by dynamin- and lipid raft-mediated endocytosis, while clathrin is not required for endocytosis of these viruses. We present evidence that productive infection of both AdFNGR and AdHNGR involves lipid rafts, with usage of flotillin-mediated cell entry for AdFNGR and limited role of caveolin in AdHNGR transduction efficiency. Lipid rafts play important role in angiogenesis and process of metastasis. Therefore, the ability of AdFNGR and AdHNGR to use lipid raft-dependent endocytosis, involving respectively flotillin- or caveolin-mediated pathway, could give them an advantage in targeting tumor cells lacking HAdV-C5 primary receptor.


Asunto(s)
Adenovirus Humanos , Humanos , Adenovirus Humanos/genética , Adenovirus Humanos/metabolismo , Línea Celular , Células Endoteliales/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo
2.
MicroPubl Biol ; 20222022.
Artículo en Inglés | MEDLINE | ID: mdl-36082020

RESUMEN

We previously showed that the silkworm holocentric spindles are square-shaped, compared to the canonical oval shape of human monocentric spindles (Vanpoperinghe et al. 2021). Further, while kinesin-5 depletion resulted in monopolar spindles in both cells, kinesin-14 depletion affected only the silkworm cells, resulting in mal-shaped spindles (Vanpoperinghe et al. 2021). We now extend our study to quantify the effect of kinesin-5 and kinesin-14 on spindle assembly dynamics and chromosome segregation in holocentric silkworm BmN4 cells. We find that mal-shaped spindle and prolonged mitosis duration are highly correlated with chromosome segregation error, leading to aneuploidy and cell death in BmN4 cells. Further, double RNAi-mediated depletion of kinesin-5 and kinesin-14 partially rescue the monopolar spindle and mal-shaped spindle phenotypes in kinesin-5 and kinesin 14-depleted cells, respectively.

3.
MicroPubl Biol ; 20212021.
Artículo en Inglés | MEDLINE | ID: mdl-34514356

RESUMEN

Proper chromosome segregation during mitosis requires both the assembly of a microtubule (MT)-based spindle and the assembly of DNA-centromere-based kinetochore structure. Kinetochore-to-MT attachment enables chromosome separation. Monocentric cells, such as found in human, have one unique kinetochore per chromosome. Holocentric cells, such as found in the silkworm, in contrast, have multiple kinetochore structures per chromosome. Interestingly, some human cancer chromosomes contain more than one kinetochore, a condition called di- and tricentric. Thus, comparing how wild-type mono- and holocentric cells perform mitosis may provide novel insights into cancer di- and tricentric cell mitosis. We present here live-cell imaging of human RPE1 and silkworm BmN4 cells, revealing striking differences in spindle architecture and dynamics, and highlighting differential kinesin function between mono- and holocentric cells.

4.
Curr Biol ; 30(4): 561-572.e10, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32032508

RESUMEN

Accurate chromosome segregation requires assembly of the multiprotein kinetochore complex at centromeres. In most eukaryotes, kinetochore assembly is primed by the histone H3 variant CenH3 (also called CENP-A), which physically interacts with components of the inner kinetochore constitutive centromere-associated network (CCAN). Unexpectedly, regarding its critical function, previous work identified that select eukaryotic lineages, including several insects, have lost CenH3 while having retained homologs of the CCAN. These findings imply alternative CCAN assembly pathways in these organisms that function in CenH3-independent manners. Here we study the composition and assembly of CenH3-deficient kinetochores of Lepidoptera (butterflies and moths). We show that lepidopteran kinetochores consist of previously identified CCAN homologs as well as additional components, including a divergent CENP-T homolog, that are required for accurate mitotic progression. Our study focuses on CENP-T, which we found to be sufficient to recruit the Mis12 and Ndc80 outer kinetochore complexes. In addition, CRISPR-mediated gene editing in Bombyx mori establishes an essential function of CENP-T in vivo. Finally, the retention of CENP-T and additional CCAN homologs in other independently derived CenH3-deficient insects indicates a conserved mechanism of kinetochore assembly between these lineages. Our study provides the first functional insights into CCAN-based kinetochore assembly pathways that function independently of CenH3, contributing to the emerging picture of an unexpected plasticity to build a kinetochore.


Asunto(s)
Cromosomas de Insectos/genética , Proteínas de Insectos/genética , Cinetocoros , Lepidópteros/genética , Secuencia de Aminoácidos , Animales , Bombyx/química , Bombyx/genética , Bombyx/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Cinetocoros/química , Cinetocoros/metabolismo , Lepidópteros/metabolismo , Alineación de Secuencia
5.
Oncotarget ; 8(57): 97344-97360, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29228615

RESUMEN

The anti-tumor potential of oncolytic adenoviruses (CRAds) has been demonstrated in preclinical and clinical studies. While these agents failed to eradicate tumors when used as a monotherapy, they may be more effective if combined with conventional treatments such as radiotherapy or chemotherapy. This study seeks to evaluate the combination of a CRAd bearing a ∆24 deletion in E1A with valproic acid (VPA), a histone deacetylase inhibitor, for the treatment of human colon carcinomas. This combination led to a strong inhibition of cell growth both in vitro and in vivo compared to treatment with CRAd or VPA alone. This effect did not stem from a better CRAd replication and production in the presence of VPA. Inhibition of cell proliferation and cell death were induced by the combined treatment. Moreover, whereas cells treated only with CRAd displayed a polyploidy (> 4N population), this phenotype was increased in cells treated with both CRAd and VPA. In addition, the increase in polyploidy triggered by combined treatment with CRAd and VPA was associated with the enhancement of H2AX phosphorylation (γH2AX), a hallmark of DNA damage, but also with a decrease of several DNA repair proteins. Finally, viral replication (or E1A expression) was shown to play a key role in the observed effects since no enhancement of polyploidy nor increase in γH2AX were found following cell treatment with a replication-deficient Ad and VPA. Taken together, our results suggest that CRAd and VPA could be used in combination for the treatment of colon carcinomas.

6.
Cell Rep ; 21(7): 1922-1935, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29141223

RESUMEN

Rac1 is a small RhoGTPase switch that orchestrates actin branching in space and time and protrusion/retraction cycles of the lamellipodia at the cell front during mesenchymal migration. Biosensor imaging has revealed a graded concentration of active GTP-loaded Rac1 in protruding regions of the cell. Here, using single-molecule imaging and super-resolution microscopy, we show an additional supramolecular organization of Rac1. We find that Rac1 partitions and is immobilized into nanoclusters of 50-100 molecules each. These nanoclusters assemble because of the interaction of the polybasic tail of Rac1 with the phosphoinositide lipids PIP2 and PIP3. The additional interactions with GEFs and possibly GAPs, downstream effectors, and other partners are responsible for an enrichment of Rac1 nanoclusters in protruding regions of the cell. Our results show that subcellular patterns of Rac1 activity are supported by gradients of signaling nanodomains of heterogeneous molecular composition, which presumably act as discrete signaling platforms.


Asunto(s)
Microdominios de Membrana/metabolismo , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo , Células 3T3 , Animales , Células COS , Chlorocebus aethiops , Proteínas de Unión al ADN/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Ratones , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Imagen Individual de Molécula/métodos , Factores de Transcripción/metabolismo
7.
Neuro Oncol ; 17(7): 953-64, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25534822

RESUMEN

BACKGROUND: Platelet-derived growth factor receptor A is altered by amplification and/or mutation in diffuse intrinsic pontine glioma (DIPG). We explored in vitro on new DIPG models the efficacy of dasatinib, a multi-tyrosine kinase inhibitor targeting this receptor. METHODS: Gene expression profiles were generated from 41 DIPGs biopsied at diagnosis and compared with the signature associated with sensitivity/resistance to dasatinib. A panel of 12 new DIPG cell lines were established from biopsy at diagnosis, serially passaged, and characterized by gene expression analyses. Effects of dasatinib (1-10 µM) on proliferation, invasion, and cytotoxicity were determined on 4 of these cell lines using live-cell imaging and flow cytometry assays. Downstream signaling and receptor tyrosine kinases (RTKs) were assessed by western blot and phospho-RTK array. The effect of the combination with the c-Met inhibitor cabozantinib was studied on cellular growth and invasion analyzed by the Chou-Talaly method. RESULTS: DIPG primary tumors and cell lines exhibited the gene expression signature of sensitivity to dasatinib. Dasatinib reduced proliferation (half-maximal inhibitory concentration = 10-100 nM) and invasion (30%-60% reduction) at 100 nM in 4/4 cultures and induced apoptosis in 1 of 4 DIPG cell lines. Activity of downstream effectors of dasatinib targets including activin receptor 1 was strongly reduced. Since multiple RTKs were activated simultaneously in DIPG cell lines, including c-Met, which can be also amplified in DIPG, the benefit of the combination of dasatinib with cabozantinib was explored for its synergistic effects on proliferation and migration/invasion in these cell lines. CONCLUSION: Dasatinib exhibits antitumor effects in vitro that could be increased by the combination with another RTK inhibitor targeting c-Met.


Asunto(s)
Anilidas/farmacología , Antineoplásicos/farmacología , Neoplasias del Tronco Encefálico/metabolismo , Dasatinib/farmacología , Glioma/metabolismo , Piridinas/farmacología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Anilidas/uso terapéutico , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Niño , Preescolar , Dasatinib/uso terapéutico , Femenino , Glioma/tratamiento farmacológico , Humanos , Masculino , Invasividad Neoplásica/prevención & control , Puente/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-met/metabolismo , Piridinas/uso terapéutico , Transducción de Señal/efectos de los fármacos
8.
PLoS One ; 8(4): e62191, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23638001

RESUMEN

Recombinant, replication-deficient serotype 5 adenovirus infects the liver upon in vivo, systemic injection in rodents. This infection requires the binding of factor X to the capsid of this adenovirus. Another organ, the adrenal gland is also infected upon systemic administration of Ad, however, whether this infection is dependent on the cocksackie adenovirus receptor (CAR) or depends on the binding of factor X to the viral capsid remained to be determined. In the present work, we have used a pharmacological agent (warfarin) as well as recombinant adenoviruses lacking the binding site of Factor X to elucidate this mechanism in mice. We demonstrate that, as observed in the liver, adenovirus infection of the adrenal glands in vivo requires Factor X. Considering that the level of transduction of the adrenal glands is well-below that of the liver and that capsid-modified adenoviruses are unlikely to selectively infect the adrenal glands, we have used single-photon emission computed tomography (SPECT) imaging of gene expression to determine whether local virus administration (direct injection in the kidney) could increase gene transfer to the adrenal glands. We demonstrate that direct injection of the virus in the kidney increases gene transfer in the adrenal gland but liver transduction remains important. These observations strongly suggest that serotype 5 adenovirus uses a similar mechanism to infect liver and adrenal gland and that selective transgene expression in the latter is more likely to be achieved through transcriptional targeting.


Asunto(s)
Adenoviridae/genética , Adenoviridae/fisiología , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/virología , Factores de Coagulación Sanguínea/metabolismo , Transducción Genética , Glándulas Suprarrenales/diagnóstico por imagen , Animales , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Factor X/metabolismo , Femenino , Vectores Genéticos/genética , Riñón/diagnóstico por imagen , Riñón/virología , Ratones , Ratones Endogámicos BALB C , Imagen Multimodal , Cintigrafía , Warfarina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA