Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 486: 116940, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677602

RESUMEN

L-theanine (L-THE), a non-protein amino acid isolated from Camelia sinensis, has antioxidant properties that could prevent oxidative damage and mitochondrial dysfunction generated by myocardial ischemia and reperfusion (I/R) injury. The present study aimed to identify the effects of pretreatment with L-THE in rat hearts undergoing I/R. Wistar rats received vehicle or 250 mg/Kg L-THE intragastrically for 10 days. On day 11, hearts were removed under anesthesia and exposed to I/R injury in the Langendorff system. Measurement of left ventricular developed pressure and heart rate ex vivo demonstrates that L-THE prevents I/R-induced loss of cardiac function. Consequently, the infarct size of hearts subjected to I/R was significantly decreased when L-THE was administered. L-THE also mitigated I/R-induced oxidative injury in cardiac tissue by decreasing reactive oxygen species and malondialdehyde levels, while increasing the activity of antioxidant enzymes, SOD and CAT. Additionally, L-THE prevents oxidative phosphorylation breakdown and loss of inner mitochondrial membrane potential caused by I/R, restoring oxygen consumption levels, increasing respiratory control and phosphorylation efficiency, as well as buffering calcium overload. Finally, L-THE modifies the expression of genes involved in the antioxidant response through the overexpression of SOD1, SOD2 and CAT; as well as the transcriptional factors PPARα and Nrf2 in hearts undergoing I/R. In conclusion, L-THE confers cardioprotection against I/R injury by preventing oxidative stress, protecting mitochondrial function, and promoting overexpression of antioxidant genes. More studies are needed to place L-THE at the forefront of cardiovascular research and recommend its therapeutic use.


Asunto(s)
Antioxidantes , Glutamatos , Mitocondrias Cardíacas , Daño por Reperfusión Miocárdica , Estrés Oxidativo , Ratas Wistar , Animales , Estrés Oxidativo/efectos de los fármacos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Antioxidantes/farmacología , Glutamatos/farmacología , Masculino , Ratas , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108432

RESUMEN

In recent years, the importance of epigenetic markers in the carcinogenesis of different malignant neoplasms has been demonstrated, also demonstrating their utility for understanding metastatic spread and tumor progression in cancer patients. Among the different biomarkers, microRNAs represent a set of non-coding RNAs that regulate gene expression, having been involved in a wide variety of neoplasia acting in different oncogenic pathways. Both the overexpression and downregulation of microRNAs represent a complex interaction with various genes whose ultimate consequence is increased cell proliferation, tumor invasion and interaction with various driver markers. It should be noted that in current clinical practice, even though the combination of different microRNAs has been shown to be useful by different authors at diagnostic and prognostic levels, there are no diagnostic kits that can be used for the initial approach or to assess recurrences of oncological diseases. Previous works have cited microRNAs as having a critical role in several carcinogenic mechanisms, ranging from cell cycle alterations to angiogenesis and mechanisms of distant metastatic dissemination. Indeed, the overexpression or downregulation of specific microRNAs seem to be tightly involved in the modulation of various components related to these processes. For instance, cyclins and cyclin-dependent kinases, transcription factors, signaling molecules and angiogenic/antiangiogenic products, among others, have been recognized as specific targets of microRNAs in different types of cancer. Therefore, the purpose of this article is to describe the main implications of different microRNAs in cell cycle alterations, metastasis and angiogenesis, trying to summarize their involvement in carcinogenesis.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/metabolismo , Carcinogénesis/genética , Neoplasias/genética , Neoplasias/patología , Ciclo Celular/genética , División Celular , Regulación Neoplásica de la Expresión Génica
3.
Plant Dis ; 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167514

RESUMEN

Chile is an important producers of sweet cherry (Prunus avium L.), with a total of 356,385 t exported in the 2021 to 2022 season. The production area includes most of the country's regions. Bacterial samples were isolated in 2017 and 2018 from 18 commercial sweet cherry orchards with canker disease. From one of this samples collected in the spring of 2018, was isolated the strain A2M176 from buds of trees that presented canker and gomosis in Malloa locality (34°23' 46'' S 71°01' 39'' W). The strain produced fluorescent pigment on King's B agar medium. Is oxidase and arginine dihydrolase negative, potato soft rot positive and showed a slight degree of tobacco hypersensitivity. It was able to growth up to 0.8 mM (200 ppm) of CuSO4·5H2O. The strain A2M176 was deposited in the Colección Chilena de Recursos Genéticos Microbianos (CChRGM) under the no. RGM 3342. The DNA of this strain was extracted from a pure culture using silica spin columns (Epoch Life Science Inc., Sugar Land, USA). The complete DNA was sequenced using HiSeq with 150 bp paired-end at GENEWIZ (New York, USA). Raw data was checked using FASTQC and trimmed with BBDuk. The genome was assembled using Unicycler v0.4.9 with defaulf settings and annotated with Prokaryotic Genome Annotation Pipeline (PGAP) v4.3. The reads and genomes were uploaded to GenBank under the BioProyect no. PRJNA750090, BioSample no. SAMN26870984 and assembly no. GCA_022936465.1. The sequenced genome was compared through Average Nucleotide Identity algorithm (ANI) using FastANI v1.33 to compare with closest complete genome available on NCBI. The strain A2M176 was identified as P. viridiflava with ANI value of 98.06% with the strain p22.E7 (GCF_900585495). Maximum likelihood phylogenetic estimation clustered strain A2M176 with other P. viridiflava strains with 95% bootstrap. The pathogenicity of the strain was tested inoculating immature cherry fruits with a needle with a bacterial suspension (1x108 CFU/ml). The inoculated fruits were placed at room temperature in a humid chamber for 10 d. Soft rot lesions were observed, which appeared at 6 days post-inoculation (DPI). The control fruits treated with sterile water did not show symptoms. Further analyses in the genome of strain A2M176 led to identify genes related to pathogenicity, such as the effector gene avrE and the regulator gen HrpL, suggesting the pathogenic capacity of the strain. Also, there were identify genes of two known Pseudomonas copper resistance mechanisms, the cus and cop operon. These genes were found part of the copABCDns cluster similar to what was observed in Pseudomonas from Mango. Presence of P. viridiflava strains causing fruit rot in P. avium is not surprising, since P. viridiflava has a wide host range and causes a variety of symptoms in different plant parts, including stems, leaves, and blossoms. P. viridiflava represents one of the multiple phylogroups found within the P. syringae species complex. To our knowledge, this is the first report of a strain of P. viridiflava copper resistant causing infection on sweet cherries in Chile.

4.
Phys Rev Lett ; 127(16): 161601, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34723615

RESUMEN

It is shown that the Ablowitz-Kaup-Newell-Segur (AKNS) integrable hierarchy can be obtained as the dynamical equations of three-dimensional general relativity with a negative cosmological constant. This geometrization of the AKNS system is possible through the construction of novel boundary conditions for the gravitational field. These are invariant under an asymptotic symmetry group characterized by an infinite set of AKNS commuting conserved charges. Gravitational configurations are studied by means of SL(2,R) conjugacy classes. Conical singularities and black hole solutions are included in the boundary conditions.

5.
Transfus Apher Sci ; 60(6): 103270, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34509384

RESUMEN

BACKGROUND: Targeting young people to donate blood is a particularly promising option. The aim of this work was to know the motivators, barriers and preferred communication channels for blood donation among university students, and to determine the factors that explain why donors give blood. MATERIALS AND METHODS: A questionnaire was distributed to 420 students (response rate: 88.3 %) attending the University of Huelva (Spain). Data were gathered on sociodemographic variables, blood donation history, motivators and barriers to donation, and communication channels. Non-parametric contrasts were used to determine possible differences in the sociodemographic characteristics or donation history, and logistic regression to determine the factors associated to donation. RESULTS: 67.38 % of the students surveyed were non-donors, 12.94 % were first-time donors, 11.05 % were infrequent donors and 8.63 % were frequent donors. "Solidarity" was the main motivator for donating blood (40 %). "Lack of information on where and how to give blood" was the main barrier for non-donors (26.4 %), with "medical reasons" cited by first-time donors (22.2 %). 93.8 % of donors wished to be notified about their next donation appointment. The majority of those surveyed preferred e-mail to receive alerts and information on donation campaigns. The factors that explained blood donation were over 26 years of age and place of residence. CONCLUSION: The study identified differences in the motivators, barriers and choice of communication channel among the university students in terms of blood donation, and the factors that explain blood donation. This knowledge is a useful source of information when designing blood donation campaigns that target young people.


Asunto(s)
Donantes de Sangre/estadística & datos numéricos , Adolescente , Adulto , Comunicación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Motivación , España , Estudiantes , Universidades , Adulto Joven
6.
Biochem Cell Biol ; 97(2): 187-192, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30332552

RESUMEN

In the kidney, the accumulation of heavy metals such as Cd2+ produces mitochondrial dysfunctions, i.e., uncoupling of the oxidative phosphorylation, inhibition of the electron transport through the respiratory chain, and collapse of the transmembrane electrical gradient. This derangement may be due to the fact that Cd2+ induces the transition of membrane permeability from selective to nonselective via the opening of a transmembrane pore. In fact, Cd2+ produces this injury through the stimulation of oxygen-derived radical generation, inducing oxidative stress. Several molecules have been used to avoid or even reverse Cd2+-induced mitochondrial injury, for instance, cyclosporin A, resveratrol, dithiocarbamates, and even EDTA. The aim of this study was to explore the possibility that the antioxidant tamoxifen could protect mitochondria from the deleterious effects of Cd2+. Our results indicate that the addition of 1 µmol/L Cd2+ to mitochondria collapsed the transmembrane electrical gradient, induced the release of cytochrome c, and increased both the generation of H2O2 and the oxidative damage to mitochondrial DNA (among other measured parameters). Of interest, these mitochondrial dysfunctions were ameliorated after the addition of tamoxifen.


Asunto(s)
Cadmio/toxicidad , Peróxido de Hidrógeno/metabolismo , Riñón/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Riñón/patología , Mitocondrias/patología , Oxidación-Reducción/efectos de los fármacos
7.
Scand J Immunol ; 89(1): e12728, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30375016

RESUMEN

The interaction of a pathogen with its host cell takes place at different levels, including the bioenergetics adaptation of both the pathogen and the host cell in the course of an infection. In this regard, Mycobacterium tuberculosis infection of macrophages induces mitochondrial membrane potential (Δψm) changes and cytochrome c release, depending on the bacteria strain's virulence, and the mitochondrial dynamics is modified by pathogens, such as Listeria monocytogenes. Here, we investigated whether two M. tuberculosis virulence factors are able to induce distinguishable bioenergetics traits in human monocyte-derived macrophages (MDMs). Results showed that Rv1411c (LprG, p27) induced mitochondrial fission, lowered the cell respiratory rate and modified the kinetics of mitochondrial Ca2+ uptake in response to agonist stimulation. In contrast, Rv1818c (PE_PGRS33) induced mitochondrial fusion, but failed to induce any appreciable effect on cell respiratory rate or mitochondrial Ca2+ uptake. Overall, these results suggest that two different virulence factors from the same pathogen (M. tuberculosis) induce differential effects on mitochondrial dynamics, cell respiration and mitochondrial Ca2+ uptake in MDMs. The timing of differential mitochondrial activity could ultimately determine the outcome of host-pathogen interactions.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Macrófagos/microbiología , Dinámicas Mitocondriales/fisiología , Mycobacterium tuberculosis/patogenicidad , Factores de Virulencia/metabolismo , Proteínas Bacterianas/metabolismo , Humanos , Macrófagos/metabolismo , Tuberculosis/metabolismo , Tuberculosis/microbiología , Virulencia/fisiología
8.
Liver Transpl ; 24(8): 1070-1083, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29679463

RESUMEN

Cytidine-5'-diphosphocholine (CDP-choline) participates as an intermediary in the synthesis of phosphatidylcholine, an essential component of cellular membranes. Citicoline treatment has shown beneficial effects in cerebral ischemia, but its potential to diminish reperfusion damage in liver has not been explored. In this work, we evaluated the hepatoprotective effect of citicoline and its possible association with inflammatory/oxidative stress and mitochondrial function because they are the main cellular features of reperfusion damage. Ischemia/reperfusion (I/R) in rat livers was performed with the Pringle's maneuver, clamping the 3 elements of the pedicle (hepatic artery, portal vein, and biliary tract) for 30 minutes and then removing the clamp to allow hepatic reperfusion for 60 minutes. The I/R + citicoline group received the compound before I/R. Liver injury was evaluated by measuring aspartate aminotransferase and alanine aminotransferase as well as lactic acid levels in serum; proinflammatory cytokines, proresolving lipid mediators, and nuclear factor kappa B content were determined as indicators of the inflammatory response. Antioxidant effects were evaluated by measuring markers of oxidative stress and antioxidant molecules. Oxygen consumption and the activities of the respiratory chain were used to monitor mitochondrial function. CDP-choline reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT), as well as lactic acid levels in blood samples from reperfused rats. Diminution in tumor necrosis factor alpha (TNF-α) and increase in the proresolving lipid mediator resolvin D1 were also observed in the I/R+citicoline group, in comparison with the I/R group. Oxidative/nitroxidative stress in hepatic mitochondria concurred with deregulation of oxidative phosphorylation, which was associated with the loss of complex III and complex IV activities. In conclusion, CDP-choline attenuates liver damage caused by ischemia and reperfusion by reducing oxidative stress and maintaining mitochondrial function. Liver Transplantation XX XX-XX 2018 AASLD.


Asunto(s)
Citidina Difosfato Colina/farmacología , Trasplante de Hígado/efectos adversos , Mitocondrias/efectos de los fármacos , Sustancias Protectoras/farmacología , Daño por Reperfusión/prevención & control , Animales , Citidina Difosfato Colina/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Hígado/citología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/cirugía , Pruebas de Función Hepática , Masculino , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/uso terapéutico , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/etiología , Daño por Reperfusión/patología
10.
Biochem Cell Biol ; 95(5): 556-562, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28595020

RESUMEN

In this work, we studied the protective effects of tamoxifen (TAM) on disulfiram (Dis)-induced mitochondrial membrane insult. The results indicate that TAM circumvents the inner membrane leakiness manifested as Ca2+ release, mitochondrial swelling, and collapse of the transmembrane electric gradient. Furthermore, it was found that TAM prevents inactivation of the mitochondrial enzyme aconitase and detachment of cytochrome c from the inner membrane. Interestingly, TAM also inhibited Dis-promoted generation of hydrogen peroxide. Given that TAM is an antioxidant molecule, it is plausible that its protection may be due to the inhibition of Dis-induced oxidative stress.


Asunto(s)
Disulfiram/efectos adversos , Membranas Mitocondriales/efectos de los fármacos , Tamoxifeno/farmacología , Animales , Calcio/metabolismo , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
11.
Basic Res Cardiol ; 112(2): 15, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28160133

RESUMEN

The demonstration that caveolin-3 overexpression reduces myocardial ischemia/reperfusion injury and our own finding that multiprotein signaling complexes increase in mitochondria in association with caveolin-3 levels, led us to investigate the contribution of caveolae-driven extracellular signal-regulated kinases 1/2 (ERK1/2) on maintaining the function of cardiac mitochondrial subpopulations from reperfused hearts subjected to postconditioning (PostC). Rat hearts were isolated and subjected to ischemia/reperfusion and to PostC. Enhanced cardiac function, reduced infarct size and preserved ultrastructure of cardiomyocytes were associated with increased formation of caveolar structures, augmented levels of caveolin-3 and mitochondrial ERK1/2 activation in PostC hearts in both subsarcolemmal (SSM) and interfibrillar (IFM) subpopulations. Disruption of caveolae with methyl-ß-cyclodextrin abolished cardioprotection in PostC hearts and diminished pho-ERK1/2 gold-labeling in both mitochondrial subpopulations in correlation with suppression of resistance to permeability transition pore opening. Also, differences between the mitochondrial subpopulations in the setting of PostC were evaluated. Caveolae disruption with methyl-ß-cyclodextrin abolished the cardioprotective effect of postconditioning by inhibiting the interaction of ERK1/2 with mitochondria and promoted decline in mitochondrial function. SSM, which are particularly sensitive to reperfusion damage, take advantage of their location in cardiomyocyte boundary and benefit from the cardioprotective signaling driven by caveolae, avoiding injury propagation.


Asunto(s)
Caveolas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Animales , Modelos Animales de Enfermedad , Immunoblotting , Poscondicionamiento Isquémico , Masculino , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Ratas Wistar
12.
Cell Biol Int ; 41(12): 1356-1366, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28884894

RESUMEN

Heavy metal ions are known to produce harmful alterations on kidney function. Specifically, the accumulation of Hg2+ in kidney tissue may induce renal failure. In this work, the protective effect of CDP-choline against the deleterious effects induced by Hg2+ on renal function was studied. CDP-choline administered ip at a dose of 125 mg/kg body weight prevented the damage induced by Hg2+ administration at a dose of 3 mg/kg body weight. The findings indicate that CDP-choline guards mitochondria against Hg2+ -toxicity by preserving their ability to retain matrix content, such as accumulated Ca2+ . This nucleotide also protected mitochondria from Hg2+ -induced loss of the transmembrane electric gradient and from the generation of hydrogen peroxide and membrane TBARS. In addition, CDP-choline avoided the oxidative damage of mtDNA and inhibited the release of the interleukins IL-1 and IL6, recognized as markers of acute inflammatory reaction. After the administration of Hg2+ and CDP, CDP-choline maintained nearly normal levels of renal function and creatinine clearance, as well as blood urea nitrogen (BUN) and serum creatinine.


Asunto(s)
Citidina Difosfato Colina/farmacología , Riñón/efectos de los fármacos , Mercurio/toxicidad , Mitocondrias/efectos de los fármacos , Animales , Creatina/metabolismo , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Riñón/metabolismo , Riñón/patología , Pruebas de Función Renal , Masculino , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Oxidación-Reducción , Ratas , Ratas Wistar , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
13.
Appl Opt ; 56(19): G69-G74, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29047471

RESUMEN

This work presents an educational simulation to support students' learning about the formation of the rainbow. The main aim of the simulation is to provide our students with a didactic tool in addition to their traditional laboratory practice, which can be easily implemented in e-learning teaching platforms. A system consisting of a flask filled with water and a screen with a rounded aperture placed between the sun and the flask was simulated; this way a faint rainbow was seen on the simulated screen. The interactive nature of the simulation allowed the students to perform some alterations that would be impossible to do in the real world; thus, the observed rainbow deviated from the simplest model. Additionally, all these modifications could be rendered into an animation, in order to observe changes in real time.

14.
Cell Biol Int ; 40(12): 1349-1356, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27730705

RESUMEN

In this work, we studied the effect of tamoxifen and cyclosporin A on mitochondrial permeability transition caused by addition of the thiol-oxidizing pair Cu2+ -orthophenanthroline. The findings indicate that tamoxifen and cyclosporin A circumvent the oxidative membrane damage manifested by matrix Ca2+ release, mitochondrial swelling, and transmembrane electrical gradient collapse. Furthermore, it was found that tamoxifen and cyclosporin A prevent the generation of TBARs promoted by Cu2+ -orthophenanthroline, as well as the inactivation of the mitochondrial enzyme aconitase and disruption of mDNA. Electrophoretic analysis was unable to demonstrate a cross-linking reaction between membrane proteins. Yet, it was found that Cu2+ -orthophenanthroline induced the generation of reactive oxygen species. It is thus plausible that membrane leakiness is due to an oxidative stress injury.


Asunto(s)
Cobre/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Compuestos Organometálicos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Fenantrolinas/toxicidad , Tamoxifeno/farmacología , Western Blotting , Calcio/metabolismo , Ciclosporina/farmacología , ADN Mitocondrial/metabolismo , Electroforesis en Gel de Poliacrilamida , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/patología , Sustancias Protectoras/farmacología , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
15.
FASEB J ; 28(8): 3618-32, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24803543

RESUMEN

C boutons are large, cholinergic, synaptic terminals that arise from local interneurons and specifically contact spinal α-motoneurons (MNs). C boutons characteristically display a postsynaptic specialization consisting of an endoplasmic reticulum-related subsurface cistern (SSC) of unknown function. In the present work, by using confocal microscopy and ultrastructural immunolabeling, we demonstrate that neuregulin-1 (NRG1) accumulates in the SSC of mouse spinal MNs. We also show that the NRG1 receptors erbB2 and erbB4 are presynaptically localized within C boutons, suggesting that NRG1-based retrograde signaling may occur in this type of synapse. In most of the cranial nuclei, MNs display the same pattern of NRG1 distribution as that observed in spinal cord MNs. Conversely, MNs in oculomotor nuclei, which are spared in amyotrophic lateral sclerosis (ALS), lack both C boutons and SSC-associated NRG1. NRG1 in spinal MNs is developmentally regulated and depends on the maintenance of nerve-muscle interactions, as we show after nerve transection experiments. Changes in NRG1 in C boutons were also investigated in mouse models of MN diseases: i.e., spinal muscular atrophy (SMNΔ7) and ALS (SOD1(G93A)). In both models, a transient increase in NRG1 in C boutons occurs during disease progression. These data increase our understanding of the role of C boutons in MN physiology and pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas Aviares/fisiología , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Neurregulina-1/fisiología , Orgánulos/química , Densidad Postsináptica/química , Terminales Presinápticos/química , Esclerosis Amiotrófica Lateral/patología , Animales , Proteínas Aviares/análisis , Embrión de Pollo , Pollos , Receptores ErbB/análisis , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/patología , Atrofia Muscular Espinal/patología , Neurregulina-1/análisis , Neurregulina-1/biosíntesis , Neurregulina-1/genética , Densidad Postsináptica/ultraestructura , Terminales Presinápticos/ultraestructura , Receptor ErbB-2/análisis , Receptor ErbB-4 , Nervio Ciático/lesiones , Nervio Ciático/ultraestructura , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo
16.
Cardiovasc Drugs Ther ; 29(2): 111-20, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25779825

RESUMEN

PURPOSE: The pathogenic mechanisms leading to cardiovascular disorders in patients with chronic kidney disease have not been clearly established, although increased oxidative stress has been pointed out as a potential cause. Therefore, as cardiovascular events are still the first cause of death in patients with chronic kidney disease and traditional drugs or therapies rarely have effects on cardiac complications, we sought to determine the effect of curcumin in treating cardiac dysfunction in rats with established chronic renal disease. METHODS AND RESULTS: Treatment consisted in daily administration of curcumin (120 mg/kg/day) dissolved in 0.05% carboxymethylcellulose via oral gavages during 30 days, beginning from day 30 after 5/6 nephrectomy (5/6Nx). Cardiac function, markers of oxidative stress, activation of PI3K/Akt/GSK3ß and MEK1/2-ERK1/2 pathway, metalloproteinase-II (MMP-2) content, overall gelatinolytic activity, ROS production and mitochondrial integrity were evaluated after 1-month treatment. Curcumin restored systolic blood pressure, diminished interventricular and rear wall thickening, decreased left ventricle dimension at end-systole (LVSd) and restored ejection fraction in nephrectomized rats. Also, it diminished metalloproteinase-II levels and overall gelatinase activity, decreased oxidative stress and inhibited the mitochondrial permeability transition pore opening. CONCLUSION: Our findings suggest that curcumin might have therapeutic potential in treatment of heart disease in patients with established CKD by attenuating oxidative stress-related events as cardiac remodeling, mitochondrial dysfunction and cell death.


Asunto(s)
Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Curcumina/farmacología , Curcumina/uso terapéutico , Corazón/efectos de los fármacos , Insuficiencia Renal Crónica/tratamiento farmacológico , Animales , Presión Sanguínea/efectos de los fármacos , Gelatinasas/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Poro de Transición de la Permeabilidad Mitocondrial , Miocardio/metabolismo , Nefrectomía , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal/efectos de los fármacos , Volumen Sistólico/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
17.
Environ Technol ; 36(1-4): 188-97, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25413113

RESUMEN

Nanoparticles of iron and potassium diphosphate (KFeP2O7) implanted in silica gel beads (SiO2) have been investigated as an alternative adsorbent for removing Cd2+ ions from aqueous solutions. Batch adsorption experiments were conducted as a function of contact time, adsorbent dosage, initial cadmium ion concentration, solution pH, and temperature. Kinetic and thermodynamic studies on the cadmium adsorption onto KFeP2O7/SiO2 include a complete analysis and discussion. The equilibrium data were well described by the Freundlich isotherm model. The adsorption kinetic of cadmium on KFeP2O7/SiO2 followed a pseudo-first-order kinetic model obtained by using nonlinear regression analysis. Thermodynamic parameters (enthalpy change, free energy change, and entropy change) indicated that the Cd2+ adsorption process was spontaneous and exothermic in nature. The results showed that the studied KFeP2O7 nanomaterial implanted in silica is an effective adsorbent for cadmium ion removal from wastewater.


Asunto(s)
Cadmio/aislamiento & purificación , Compuestos de Hierro/química , Nanopartículas del Metal/química , Fosfatos/química , Compuestos de Potasio/química , Gel de Sílice/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Cadmio/química , Simulación por Computador , Iones , Nanopartículas del Metal/ultraestructura , Microesferas , Modelos Químicos , Tamaño de la Partícula , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
18.
Cell Biol Int ; 38(3): 287-95, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23765583

RESUMEN

Chemical modification of primary amino groups of mitochondrial membrane proteins by the fluorescent probe fluorescamine induces non-specific membrane permeabilisation. Titration of the lysine ϵ-amino group promoted efflux of accumulated Ca(2+), collapse of transmembrane potential and mitochondrial swelling. Ca(2+) release was inhibited by cyclosporin A. Considering the latter, we assumed that fluorescamine induces permeability transition. Carboxyatractyloside also inhibited the reaction. Using a polyclonal antibody for adenine nucleotide translocase, Western blot analysis showed that the carrier appeared labelled with the fluorescent probe. The results point out the importance of the ϵ-amino group of lysine residues, located in the adenine nucleotide carrier, on the modulation of membrane permeability, since its blockage suffices to promote opening of the non-specific nanopore.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Fluorescamina/farmacología , Lisina/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Translocasas Mitocondriales de ADP y ATP/metabolismo , Animales , Atractilósido/análogos & derivados , Atractilósido/metabolismo , Calcio/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Masculino , Potenciales de la Membrana/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/efectos de los fármacos , Dilatación Mitocondrial/efectos de los fármacos , Dilatación Mitocondrial/fisiología , Ratas , Ratas Wistar
19.
JCI Insight ; 9(6)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516890

RESUMEN

Sodium-glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin (Dapa), exhibited nephroprotective effects in patients with chronic kidney disease (CKD). We assessed the efficacy of short-term Dapa administration following acute kidney injury (AKI) in preventing CKD. Male Wistar rats were randomly assigned to Sham surgery, bilateral ischemia for 30 minutes (abbreviated as IR), and IR + Dapa groups. Daily treatment with Dapa was initiated just 24 hours after IR and maintained for only 10 days. Initially, rats were euthanized at this point to study early renal repair. After severe AKI, Dapa promptly restored creatinine clearance (CrCl) and significantly reduced renal vascular resistance compared with the IR group. Furthermore, Dapa effectively reversed the mitochondrial abnormalities, including increased fission, altered mitophagy, metabolic dysfunction, and proapoptotic signaling. To study this earlier, another set of rats was studied just 5 days after AKI. Despite persistent renal dysfunction, our data reveal a degree of mitochondrial protection. Remarkably, a 10-day treatment with Dapa demonstrated effectiveness in preventing CKD transition in an independent cohort monitored for 5 months after AKI. This was evidenced by improvements in proteinuria, CrCl, glomerulosclerosis, and fibrosis. Our findings underscore the potential of Dapa in preventing maladaptive repair following AKI, emphasizing the crucial role of early intervention in mitigating AKI long-term consequences.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Daño por Reperfusión , Animales , Humanos , Masculino , Ratas , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/metabolismo , Glucosa , Ratas Wistar , Insuficiencia Renal Crónica/tratamiento farmacológico , Daño por Reperfusión/complicaciones , Daño por Reperfusión/metabolismo , Sodio/metabolismo , Transportador 2 de Sodio-Glucosa/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico
20.
Arch Med Res ; 55(3): 102983, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492326

RESUMEN

Maternal obesity predisposes offspring (F1) to cardiovascular disease. To evaluate basal heart function and ischemia-reperfusion (IR) responses in F1 males and females of obese mothers, female Wistar rats (F0) were fed chow or an obesogenic (MO) diet from weaning through pregnancy and lactation. Non-sibling F1 males and females were weaned to chow at postnatal day (PND) 21 and euthanized at PND 550. Offspring of MO mothers (MOF1) rarely survive beyond PND 650. Hearts were immediately isolated from euthanized F1s and subjected to 30 min ischemia with 20 min reperfusion. Retroperitoneal fat, serum triglycerides, glucose, insulin, and insulin resistance were measured. Baseline left ventricular developed pressure (LVDP) was lower in male and female MOF1 than in controls. After global ischemia, LVDP in control (C) male and female F1 recovered 78 and 83%, respectively, while recovery in MO male and female F1 was significantly lower at 28 and 52%, respectively. Following the IR challenge, MO hearts showed a higher functional susceptibility to reperfusion injury, resulting in lower cardiac reserve than controls in both sexes. Female hearts were more resistant to IR. Retroperitoneal fat was increased in male MOF1 vs. CF1. Circulating triglycerides and insulin resistance were increased in male and female MOF1 vs. CF1. These data show that MO programming reduces F1 cardiac reserve associated with age-related insulin resistance in a sex-specific manner.


Asunto(s)
Resistencia a la Insulina , Efectos Tardíos de la Exposición Prenatal , Humanos , Ratas , Femenino , Embarazo , Masculino , Animales , Anciano , Resistencia a la Insulina/fisiología , Ratas Wistar , Obesidad , Insulina , Triglicéridos , Dieta Alta en Grasa , Isquemia , Reperfusión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA