Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 926: 171932, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38522527

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a class of persistent chemicals that have been associated with a diverse array of adverse environmental and human health related effects. In addition to a growing list of health concerns, PFAS are also ubiquitously used and pervasive in our natural and built environments, and they have an innate ability to be highly mobile once released into the environment with an unmatched ability to resist degradation. As such, PFAS have been detected in a wide variety of environmental matrices, including soil, water, and biota; however, the matrix that largely dictates human exposure to PFAS is drinking water, in large part due to their abundance in water sources and our reliance on drinking water. As Florida is heavily reliant upon water and its varying sources, the primary objective of this study was to survey the presence of PFAS in drinking water collected from taps from the state of Florida (United States). In this study, 448 drinking water samples were collected by networking with trained citizen scientists, with at least one sample collected from each of the 67 counties in Florida. Well water, tap water, and bottled water, all sourced from Florida, were extracted and analyzed (31 PFAS) using isotope dilution and ultra-high-performance liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS). Overall, when examining ∑PFAS: the minimum, maximum, median, and mean were ND, 219, 2.90, and 14.06 ng/L, respectively. The data herein allowed for a comparison of PFAS in drinking water geographically within the state of Florida, providing vital baseline concentrations for prospective monitoring and highlighting hotspots that require additional testing and mitigation. By incorporating citizen scientists into the study, we aimed to educate impacted communities regarding water quality issues and solutions.


Asunto(s)
Ácidos Alcanesulfónicos , Colaboración de las Masas , Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Florida , Estudios Prospectivos , Espectrometría de Masas en Tándem , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Ácidos Alcanesulfónicos/análisis
2.
Sci Total Environ ; 927: 171758, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521272

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) have gained widespread commercial use across the globe in various industrial and consumer products, such as textiles, firefighting foams, and surface coating materials. Studies have shown that PFAS exhibit a strong tendency to accumulate within aquatic food webs, primarily due to their high bioaccumulation potential and resistance to degradation. Despite such concerns, their impact on marine predators like sharks remains underexplored. This study aimed to investigate the presence of 34 PFAS in the plasma (n = 315) of four small coastal sharks inhabiting the South Atlantic Bight of the United States (U.S). Among the sharks studied, bonnetheads (Sphyrna tiburo) had the highest ∑PFAS concentration (3031 ± 1674 pg g - 1 plasma, n = 103), followed by the Atlantic sharpnose shark (Rhizoprionodon terraenovae, 2407 ± 969 pg g - 1, n = 101), blacknose shark (Carcharhinus acronotus, 1713 ± 662 pg g - 1, n = 83) and finetooth shark (Carcharhinus isodon, 1431 ± 891 pg g - 1, n = 28). Despite declines in the manufacturing of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), the long-chain (C8 - C13) perfluoroalkyl acids (PFAAs) were frequently detected, with PFOS, perfluorodecanoic acid (PFDA), and perfluorotridecanoic acid (PFTrDA) present as the most dominant PFAS. Furthermore, males exhibited significantly higher ∑PFAS concentrations than females in bonnetheads (p < 0.01), suggesting possible sex-specific PFAS accumulation or maternal offloading in some species. The results of this study underscore the urgency for more extensive biomonitoring of PFAS in aquatic/marine environments to obtain a comprehensive understanding of the impact and fate of these emerging pollutants on marine fauna.


Asunto(s)
Monitoreo del Ambiente , Fluorocarburos , Tiburones , Contaminantes Químicos del Agua , Animales , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Estados Unidos , Océano Atlántico , Femenino , Masculino , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA