Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Environ Manage ; 360: 121192, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38781880

RESUMEN

The global demand for valuable metals and minerals necessitates the exploration of alternative, sustainable approaches to mineral recovery. Seawater mining has emerged as a promising option, offering a vast reserve of minerals and an environmentally friendly alternative to land-based mining. Among the various techniques, Nanofiltration (NF) has gained significant attention as a preliminary treatment step in Minimum Liquid Discharge (MLD) and Zero Liquid Discharge (ZLD) schemes. This study focused on the potential of two underexplored commercial polyamide based NF membranes, Synder NFX and Vontron VNF1, with enhanced divalent over monovalent separation factors, in optimizing the extraction of magnesium hydroxide (Mg(OH)2) from seawater and seawater reverse osmosis (SWRO) brines. The research encompassed a thorough characterization of the membranes utilizing advanced physic-chemical analytical techniques, followed by rigorous experimental assessments using synthetic seawater and SWRO brine in concentration configuration. The findings highlighted the superior selectivity of NFX for magnesium recovery from SWRO brine and the promising concentration factors of VNF1 for seawater treatment. Cross-validation of experimental data with a mathematical model demonstrated the model's reliability as a process design tool in predicting membrane performance. A comprehensive techno-economic evaluation demonstrates the potential of NFX, operating optimally at 23 bar pressure and 70% permeate recovery rate, to yield an estimated annual revenue of 5.683 M€/yr through Mg(OH)2 production from SWRO brine for a plant with a nominal capacity of 0.8 Mm3/y. This research shed light on the promising role of NF membranes in enhancing mineral recovery taking benefit of their separation factors and emphasizes the economic viability of leveraging NF technology for maximizing magnesium recovery from seawater and SWRO brines.


Asunto(s)
Filtración , Magnesio , Agua de Mar , Agua de Mar/química , Magnesio/química , Filtración/métodos , Membranas Artificiales , Ósmosis , Sales (Química)
2.
J Environ Manage ; 307: 114555, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085965

RESUMEN

Winery and olive mill industries generate large amounts of wastes causing important environmental problems. The main aim of this work is the evaluation of different membrane separation processes like microfiltration, ultrafiltration, nanofiltration, and reverse osmosis for the recovery of polyphenols from winery and olive mill wastes in aqueous solutions. Membrane processes were tested separately in a closed-loop system, and by an integration in a concentration mode sequential design (open-loop). Feed flow rate was varied from 1 to 10 mL min-1, and permeate samples were taken in order to measure the polyphenols concentration. The separation and concentration efficiency were evaluated in terms of total polyphenol content, and by polyphenols families (hydroxybenzoic acids (HB), hydroxycinnamic acids (HC), and flavonoids (F)), using high performance liquid chromatography. Results showed that MF and UF membranes removed suspended solids and colloids from the extracts. NF was useful for polyphenols separation (HB rejections were lower than for HC and F: HB rejections of 50 and 63% for lees filters and olive pomace extracts, respectively), and RO membranes were able to concentrate polyphenols streams (86 and 95% rejection from lees filters and olive pomace, respectively). Membranes sequential designs for lees filters and olive pomace extracts, using a selective membrane train composed by UF, NF and RO membranes, were able to obtain polyphenol rich streams and high-quality water streams for reuse purposes.


Asunto(s)
Olea , Humanos , Membranas Artificiales , Polifenoles/análisis , Solventes , Aguas Residuales
3.
J Environ Manage ; 283: 112004, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33529931

RESUMEN

Acid mine waters (AMWs), generated in the processing of polymetallic sulphides, contain copper and zinc as the main valuable transition metal ions, which are typically removed by liming, due to their great environmental impact. In this context, this work proposes the integration of selective precipitation (SP) and ion-exchange (IX) processes for the separation and recovery of both valuable metals to encourage on-site and off-site management options promoting valorisation routes. Thus, the main objectives of this work were (i) the selective removal of Fe(III) and Al(III), using NaOH under pH control (pH < 5) to avoid the precipitation of Cu(II) and Zn(II) and (ii) the evaluation of a solvent-impregnated resin (Lewatit VP OC 1026, named VP1026) and a cation IX resin (Lewatit TP 207, named TP207) for the sequential extraction of both metal ions from AMW (batch and column experiments). Results indicated that the metallic pollution load was mostly removed during the SP process of Fe(III) (>99%) and Al(III) (>90%) as hydroxylsulphates (e.g., schwertmannite and basaluminite). The metal extraction profiles were determined for both metals from pH 1 to pH 5 by batch experiments, and indicated that the best extraction of Zn(II) was obtained using VP1026, being higher than 96% (pH = 2.6-2.8), whereas TP207 extraction performance was optimal for Cu(II) extraction (>99%) at pH = 3-4. Moreover, in dynamic experiments using a fixed-bed configuration, it was possible to separate and concentrate Zn(II) (concentration factor = 10) and Cu(II) (concentration factor = 40) using VP1026 and TP207, respectively. Overall, the integration of SP and IX processes showed a great potential in the separation and recovery of valuable metals from mine waters to promote a circular economy, based on the management proposal for non-ferrous metallurgical industries. The recovered Zn-rich and Cu-rich sulphuric concentrated streams were theoretically evaluated for further on-site or off-site re-use treatments (e.g., electrowinning, precipitation, crystallization).


Asunto(s)
Compuestos Férricos , Metales Pesados , Cobre/análisis , Concentración de Iones de Hidrógeno , Intercambio Iónico , Metales Pesados/análisis , Minería , Zinc/análisis
4.
J Environ Manage ; 289: 112549, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33872872

RESUMEN

Management of in-land reverse osmosis (RO) desalination brines generated from surface brackish waters is a current challenge. Among the different near-Zero and Zero Liquid Discharge (ZLD) alternatives, Membrane Distillation (MD), in which the transport of water is thermally driven, appears as an attractive technology if a residual heat source is available. The aim of this study was to identify the limits of Direct Contact MD (DCMD) pre-treatments such as acidification and aeration, or the combination of both to quantify the scaling reduction potential when treating a RO brine from surface brackish water. Experimental data were used to evaluate the effectiveness of DCMD to achieve the highest concentration factors, depending on the chosen pre-treatment. Additionally, an economic analysis of the operational cost, taking as case study a site where the current management of the brine is the discharge to the sea, was also carried out. Results showed that pre-treatments enhanced MD performance by increasing the concentration factor achieved and highest volume reductions (about 3 times) were reached with the combination of acidification and aeration pre-treatments. Both processes reduced the precipitation potential of CaCO3(s) by reducing the total inorganic carbon (>90%); however, CaSO4·2H2O(s) precipitated. Results also indicated that even if a waste heat source is available, brine disposal into the sea is the cheapest option, while ZLD alternatives were not attractive in the current regulatory framework since their cost was higher than the discharge to the sea. Other options related to the Minimal Liquid Discharge may be more economically attractive.


Asunto(s)
Destilación , Purificación del Agua , Membranas Artificiales , Ósmosis , Sales (Química) , Tecnología
5.
Sci Total Environ ; 923: 171438, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38438050

RESUMEN

The European Union (EU) identified a list of Critical Raw Materials (CRMs) crucial for its economy, aiming to find alternative sources. Seawater is a promising option as it contains almost all elements, although most at low concentrations. However, to the present, the CRMs' recovery from seawater is technically and economically unfeasible. Other alternatives to implement sea mining might be preferred, such as reverse osmosis brines or saltworks bitterns (after sodium chloride crystallisation). The CRMs' extraction in a selective way can be achieved using highly selective recovery processes, such as chelating sorbents. This study focuses on extracting Trace Elements (TEs) from solar saltworks brines, including boron, cobalt, gallium and germanium, using commercial N-methylglucamine sorbents (S108, CRB03, CRB05). The application of these sorbents has shown potential for boron recovery, but their selectivity for cobalt, gallium, and germanium requires further investigation. This research aims to assess these sorbents' kinetics and column mode performance for TEs recovery from synthetic bitterns. Boron and germanium were rapidly sorbed, reaching equilibrium (>90 %) within 1 h, except for S108, which took 2 h. In column mode, 20-25 pore volumes of bittern were treated to remove boron and germanium, but competition from other elements reduced treatment capacity. An acidic elution (1 M hydrochloric acid) allowed to elute them (>90 %), reaching concentration factors for germanium and boron of 35 and 11, respectively, while cobalt and gallium had less affinity for the sorbents. In addition, the experiments performed were fitted by a mass transfer model to determine the equilibrium constants and selectivities. Therefore, bittern mining has been proven as a secondary/alternative source to obtain CRMs, which can lead the EU to a position in which its dependence on other countries to obtain these raw materials would be decreased.

6.
Sci Total Environ ; 951: 175576, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153610

RESUMEN

The technical feasibility of leaching antimony from an antimony-bearing copper sulphide concentrate, using alkaline sulphide solutions and microwave-assisted and non-assisted heating technology, is investigated at a laboratory scale. The leaching test examines the influence of selective leaching reagent (Na2S and NaOH) concentrations, solid/liquid ratio, and temperature. The results indicate that antimony dissolution is highly selective (e.g. only Sb and As are leached), depending on the concentrations of leaching reagents and the leaching temperature. The influence of temperature on the mineral's dissolution, in the range 25-140 °C, is analysed from a thermochemical point of view using equilibrium databases. Under the optimal conditions: leaching agent: 250 g/L Na2S, 60 g/L NaOH, 2 h, 140 °C, with microwave assisted, the leaching efficiency of Sb reached 95.7 %. The antimony content in the copper concentrate is successfully reduced from 1.1 wt% to <0.2 wt% Sb, making it suitable for copper concentrate metallurgical processing. The study demonstrates that increasing temperature and NaOH/Na2S concentrations collectively enhance leaching efficiency, with a statistical significance, reducing both leaching time and the required temperature, compared to non-microwave-assisted leaching. Furthermore, it is established that excess free hydrogen sulphide ions ensure the efficient dissolution of the main impurities associated with penalties, such as antimony and arsenic, with limited copper and iron dissolution from the copper concentrate, predominantly chalcopyrite. Finally, an integrated hydrometallurgical process flowsheet for antimony removal and recovery from a sulphide copper concentrate is proposed.

7.
Sci Total Environ ; 858(Pt 3): 160117, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36372164

RESUMEN

Nitrogen (N) is a macronutrient that, together with P and K, is vital for improving agricultural yields, but its excessive use in crop fertilisation and presence in treated wastewater and sludge are generating emissions both into the atmosphere and into natural water bodies, which leads to eutrophication events. The Haber-Bosch process is energy-intensive and it is the main chemical route to produce reactive nitrogen for the production of fertilisers. Furthermore, there is a strong dependence on imports of reactive nitrogen in Spain and Europe. For these reasons, it is necessary to propose sustainable alternatives that allow solving environmental and supply problems, in addition to proposing efficient management schemes that fit into the circular economy approach. In this context, a nitrogen flow analysis (NFA) was carried out for Spain with the year 2016 as reference. To assess some interactions and flows of N, specific sub-models were also considered for the agriculture and waste management systems. For the food and non-food flow systems, country-specific data were considered. The sectors covered were crop production (CP), animal production (AP), food processing (FP), non-food production (NF) and human consumption (HC). The results reveal a total annual import of 2142 kt N/y, of which 43 % accumulated in stocks of soils and water bodies (913 kt N/y). The largest proportion of losses was associated with emissions from agriculture (724 kt N/y to water bodies and 132 kt N/y accumulated in soils), followed by industry emissions to the atmosphere (122 kt N/y). Wastewater treatment plants (WWTPs) received around 67 kt N/y, of which 26 % was removed as biosolids and 20 % of these biosolids were recovered to be used for fertilising applications. The 49 kt N/y discharged in the final treated effluent represented 79 % of the total loss of reactive nitrogen to water bodies. In addition, an analysis of N-use efficiency and the actions required for its improvement in Spain, as well as the impact of the current diet on the N cycle, was carried out.


Asunto(s)
Nitrógeno , Agua , Humanos , España , Europa (Continente)
8.
Sci Total Environ ; 810: 152258, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896513

RESUMEN

Acidic mine Drainage (AMD) is still considered one of the greatest mining sustainability challenges due to the large volumes of wastes generated and the high associated treatment cost. New regulation initiatives on sustainable development, circular economy and the need for strategic elements as Rare Earth Elements (REE) may overcome the traditional research initiatives directed to developing low cost treatment options and to develop research initiatives to identify the potential benefit of considering such AMD as a potential secondary resource. As an example, this study develops the integration of a three-stage process where REE are selectively separated from base metals (e.g. Fe, Al, Mn, Ca, Mg, Cd, Pb) and then concentrate to produce a rich REE by-product recovered as REE-phosphates. Selective separation of Fe (>99%) was achieved by total oxidation to Fe(III) and subsequent precipitation as schwertmannite at pH 3,6 ± 0.2. REE were then extracted from AMD using a sulfonic ion-exchange resin to produce concentrated REE sulfuric solutions up to 0.25 gREE/L. In a final stage selective separation of REE from Al(III), Ca(II) and Mg(II) and transitions elements (Cu, Zn, Ni) was achieved by precipitation with phosphate solutions under optimized pH control and total phosphate concentration. XRD analysis identified low-crystalline minerals. By using a thermal treatment the presence of PrPO4(s) and Cheralite (CePO4(s)) where Ce is substituted by La and Ca and Xenotime (YPO4(s)) were found as main minerals AlPO4(s) Ca,MgYPO4(s) were also identified.


Asunto(s)
Metales de Tierras Raras , Contaminantes Químicos del Agua , Ácidos , Compuestos Férricos , Metales de Tierras Raras/análisis , Minería , Contaminantes Químicos del Agua/análisis
9.
Sci Total Environ ; 815: 152842, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995580

RESUMEN

This study demonstrates the techno-economic reliability of an innovative fit-for-use treatment train to boost municipal reclaimed water reuse fore industrial uses in the Barcelona Metropolitan Area (BMA). The relatively high conductivity (2090 µS/cm) and hardness (454 mg/L) of reclaimed water in the BMA (e.g. Water Reclamation Plant (WRP) of El Baix Llobregat, Barcelona, Spain), together with the restrictive water quality demands in industrial uses, claims for the implementation of advanced reclamation schemes based on desalination technologies such as reverse osmosis (RO). The study assesses the benefits of two potential pre-treatments of the RO stage: (i) ultrafiltration (UF) or (ii) an innovative high-performance nano-structured polymeric adsorbent (CNM); in which a permeability decline of 5% was observed when CNM was used as a pre-treatment, while a stable permeability of RO was found when was fed by the UF effluent. On the other hand, generic cost curves have been calculated for the technologies evaluated and were applied to estimate capital and operational expenditures (CAPEX and OPEX) for the scale-up in three different industrial sites (e.g., chemical, waste management and electro-coating industries). The economic assessment indicates that the use of municipal reclaimed water is economically competitive in front of the use of tap water in the BMA, providing savings between 0.13 and 0.52 €/m3 for the waste management industry and between 0.49 and 0.98 €/m3 for the electrocoating industry. On the other hand, the use of groundwater in one of the industrial sites and its relatively low cost implied that, although it is necessary a RO, the current cost of water is significantly lower.


Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Membranas Artificiales , Ósmosis , Reproducibilidad de los Resultados , España , Aguas Residuales
10.
Sci Total Environ ; 847: 157544, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35878854

RESUMEN

Seawater represents a potential resource for raw materials extraction. Although NaCl is the most representative mineral extracted other valuable compounds such as Mg, Li, Sr, Rb and B and elements at trace level (Cs, Co, In, Sc, Ga and Ge) are also contained in this "liquid mine". Most of them are considered as Critical Raw Materials by the European Union. Solar saltworks, providing concentration factors of up-to 20 to 40, offer a perfect platform for the development of minerals and metal recovery schemes taking benefit of the concentration and purification achieved along the evaporation saltwork ponds. However, the geochemistry of these elements in this environment has not been yet thoroughly evaluated. Their knowledge could enable the deployment of technologies capable to achieve the recovery of valuable minerals. The high ionic strengths expected (0.5-7 mol/kg) and the chemical complexity of the solutions imply that only numerical geochemical codes, as PHREEQC, and the use of Pitzer model to estimate the activity coefficients of the different species in solution can be adopted to provide valuable description of the systems. In the present work, for the first time, PHREEQC Pitzer code database was extended to include the target minor and trace elements using Trapani saltworks (Sicily, Italy) as a case study system. The model was able to predict: i) the purity in halite and the major impurities contained, mainly Ca, Mg and sulphate species; ii) the fate of minor components as B, Sr, Cs, Co, Ge and Ga along the evaporation ponds. The results obtained pose a fundamental step in critical raw materials mining from seawater brine, for process intensification and combination with desalination.


Asunto(s)
Oligoelementos , Metales/análisis , Minerales/análisis , Estanques , Sicilia , Cloruro de Sodio , Sulfatos , Oligoelementos/análisis
11.
J Hazard Mater ; 403: 123886, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33264953

RESUMEN

Arsenic and selenium presence in acid mine waters (AMWs) limits their disposal due to environmental regulations. The focus to solve the economic infeasibility is directed to sustainable solutions, promoting resource recovery. In fact, rare earth elements (REEs) recovery is proposed in most of the Iberian Pyrite Belt AMWs. However, the presence of arsenic and selenium may impact in the REEs recovery. Among different alternatives, nanofiltration (NF) provides a concentration stage on REEs recovery, reduces the nominal flow and removes hazardous species. In this work, Iberian Pyrite Belt AMWs with up to 10 mg/L REEs, containing arsenic (2 mg/L), were treated with a NF membrane. Firstly, AMWs were pre-treated with H2O2/NaOH, to oxidise Fe(II) to Fe(II) and As(III) to As(V), promoting their removal and avoiding their potential precipitation at the membrane. Subsequently, NF pressure effect (6-20 bar) was studied, removing metals (>95 %), whereas arsenic rejections ranged from 60 to 71 %. Then, water recovery potential was evaluated at 10, 15 and 22 bar by reproducing a 10-stages NF plant. Results showed that the proposed treatment could be an alternative for arsenic and selenium removal (70 µg/L and 0.5 µg/L permeate concentrations, respectively) to achieve mining discharge limits according to regulations.

12.
Environ Geochem Health ; 32(4): 373-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20387094

RESUMEN

In this study, two mixtures of municipal compost, limestone and, optionally, zero-valent iron were assessed in two column experiments on acid mine treatment. The effluent solution was systematically analysed throughout the experiment and precipitates from both columns were withdrawn for scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractometry analysis and, from the column containing zero-valent iron, solid digestion and sequential extraction analysis. The results showed that waters were cleaned of arsenic, metals and acidity, but chemical and morphological analysis suggested that metal removal was not due predominantly to biogenic sulphide generation but to pH increase, i.e. metal (oxy)hydroxide and carbonate precipitation. Retained arsenic and metal removal were clearly associated to co-precipitation with and/or sorption on iron and aluminum (oxy)hydroxides. An improvement on the arsenic removal efficiency was achieved when the filling mixture contained zero-valent iron. Values of arsenic concentrations were then always below 10 microg/L.


Asunto(s)
Arsénico/química , Carbonato de Calcio/química , Compuestos de Hierro/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Agua/química , Arsénico/análisis , Concentración de Iones de Hidrógeno , Minería , Permeabilidad , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
13.
Chemosphere ; 245: 125606, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31855756

RESUMEN

The accumulation of ammonia in water bodies can cause eutrophication and reduce water quality. Furthermore, 80% of the ammonia in the world is consumed as fertilizer, which makes it a resource that can be recovered under the circular economy concept. Then, ammonia from wastewater can be valorised for agricultural applications. Liquid-liquid membrane contactors (LLMCs) have been postulated as a novel and eco-friendly technology for ammonia recovery, because they can convert dissolved ammonia into ammonium salts by an acid stripping solution. The concentration of the ammonium salt produced is limited by the co-transport of water in LLMC. Further concentration by electrodialysis (ED) is presented as a solution to overcome this problem. In this work, ammonia streams with different initial ammonia concentrations (1.7-4.0 g/L) were treated by LLMCs to produce liquid ammonium salt fertilizers (as NH4NO3 and NH4H2PO4). Then, these ammonium solutions were concentrated by ED in order to achieve the nitrogen content required for direct application in agriculture for fertigation. After the LLMC process, the fertilizer obtained was composed of approximately 5.1% or 10.1% (w/w) nitrogen, depending on the initial ammonia concentration. After that, it was possible to concentrate these ammonium salts by a factor of 1.6 ± 0.3 using ED with an optimal energy consumption of 0.21 ± 0.08 kWh/kg ammonium salt and 93.1 ± 4.2% of faradaic yield. This gave a liquid fertilizer composed of 15.6% (w/w) nitrogen as NH4NO3. Overall, it was possible to integrate two innovative membrane technologies for the valorisation and concentration of nutrients from ammonia wastewater streams.


Asunto(s)
Amoníaco/aislamiento & purificación , Compuestos de Amonio/química , Fertilizantes , Membranas Artificiales , Aguas Residuales/química , Agricultura/métodos , Amoníaco/análisis , Nitrógeno/análisis , Reciclaje
14.
Sci Total Environ ; 738: 139780, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32526411

RESUMEN

Acidic Mine Waters (AMWs) are characterised by high acidity (pH < 3) as H2SO4 and elevated contents of metals (Al, Fe, Cu, Zn), including rare earth elements (REEs). Due to the exhaustion of minable REE containing-minerals, AMWs are increasingly regarded as an alternative source of REEs. Among the different alternatives for the pre-concentration of AMWs required to make the REE extraction possible, nanofiltration (NF) membranes emerge as a promising technology because they not only successfully reject multivalent ions (metals), allowing its concentration in the retentate stream, but also permit the transport of monovalent ones, such as H+ and HSO4-, allowing the recovery of sulphuric acid in the permeate. Despite this potential of NF, there is still a lack of modelling tools for predicting the performance of NF membranes because of its dependence on solution composition, membrane properties and interaction between both. In this study, a prediction tool based on the Solution-Electro-Diffusion model (including the effect of solution composition) was developed and experimentally validated for the application of two polyamide-based NF membranes (NF270 and Desal DL) for the recovery of REEs and H2SO4 from three different synthetic solutions mimicking AMWs (pH 1.0, 60 mg/L REEs and, 25-600 mg/L Al, Cu, Ca and Zn) differing in their Fe concentration (0-2125 mg/L). Metals were effectively rejected (>98%), whereas H2SO4 was transported across the membrane (H+ rejections <30%). The mathematical model was able to predict the performance of both membranes as well as the potential scaling events associated with Fe and Al hydroxides and hydroxy-sulphates.

15.
Sci Total Environ ; 647: 1373-1384, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30282326

RESUMEN

Wastewater treatment plants (WWTPs) are no longer considered pollution removal systems but rather resources (nutrients and energy) recovery plants. Legislation imposing more stringent effluent requirements and the need energy self-sufficient or even energy-positive plants are the main drivers for the research and development of new WWTP configurations. While a lot of effort has been focused on developing new processes for nutrient recovery, limited efforts have been allocated to maximizing energy recovery from the organic load. Within this context, high-rate activated sludge (HRAS) is the most promising alternative technology to redirect carbon (organic compounds) towards energy as biogas. This is a critical review of the last decade's development of new alternatives for carbon redirection to improve the energy balance of WWTPs on both the laboratory and the industrial scale.

16.
Sci Total Environ ; 671: 288-298, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-30928758

RESUMEN

The presence of sewage-borne Organic Micro-Pollutants (OMP) in Wastewater Treatment Plants (WWTP) effluents represents an increasing concern when water is reclaimed for irrigation or even indirect potable reuse. During eighteen months, an innovative hybrid water reclamation scheme based on a Membrane Biological Reactor (MBR) enhanced with Powder Activated Carbon (PAC) was operated at pilot-scale (70 m3/d) in order to compare it with state-of-the art Wastewater Reclamation System (WWRS) also revamped with a final step of ozonation-UV. Removal of persistent OMP, water quality and treatment costs were evaluated and compared for the different treatment schemes. OMP removal efficiency results for the different schemes concluded that established technologies, such as physico-chemical and filtration systems as well as MBR, do not remove significantly (>15%) the most recalcitrant compounds. The upgrading of these two systems through the addition of ozonation-UV step and PAC dosing allowed improving average recalcitrant OMP removal to 85 ±â€¯2 and 75 ±â€¯5%, respectively. In term of costs, PAC-MBR represents an increase of 37% of costs regarding conventional systems but presents improvements of 50% reduction in space and water quality. On the other hand, ozonation requires up to a 15% increase of foot-print; nevertheless, represents lower costs and lower carbon footprint. Ozonation-UV seems to be the best option for upgrading existing facilities, while PAC-MBR should be considered when space represents a critical limitation and produced water is reused for high water quality purposes.

17.
J Hazard Mater ; 157(2-3): 386-96, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18308468

RESUMEN

Granular activated carbon (GAC) was evaluated as a suitable sorbent for polycyclic aromatic hydrocarbons (PAHs) removal from aqueous solutions. For this purpose, kinetic measurements on the extraction of a family of six PAHs were taken. A morphology study was performed by means of a scanning electron microscopy (SEM) analysis of GAC samples. Analyses of the batch rate data for each PAH were carried out using two kinetic models: the homogenous particle diffusion model (HPDM) and the shell progressive model (SPM). The process was controlled by diffusion rate the solutes (PAHs) that penetrated the reacted layer at PAH concentrations in the range of 0.2-10 mg L(-1). The effective particle diffusion coefficients (D(eff)) derived from the two models were determined from the batch rate data. The Weber and Morris intraparticle diffusion model made a double contribution to the surface and pore diffusivities in the sorption process. The D(eff) values derived from both the HPMD and SPM equations varied from 1.1 x 10(-13) to 6.0 x 10(-14) m(2) s(-1). The simplest model, the pore diffusion model, was applied first for data analysis. The model of the next level of complexity, the surface diffusion model, was applied in order to gain a deeper understanding of the diffusion process. This model is able to explain the data, and the apparent surface diffusivities are in the same order of magnitude as the values for the sorption of functionalized aromatic hydrocarbons (phenols and sulphonates) that are described in the literature.


Asunto(s)
Carbón Orgánico/química , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Difusión , Cinética , Estructura Molecular , Tamaño de la Partícula , Hidrocarburos Policíclicos Aromáticos/química , Contaminantes Químicos del Agua/química
18.
Sci Total Environ ; 630: 781-789, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29499536

RESUMEN

The use of low-cost inorganic sorbents as a new sustainable strategy to enhance the valorization of nutrients (N-P-K), from the urban water cycle (e.g., side streams from sewage sludge anaerobic digestion), in agriculture applications is presented. The simultaneous recovery and stabilization of ammonium and phosphate by using a mixture of two reactive sorbents (Na and K zeolites and magnesium oxide) was evaluated. The nutrients stabilization process, favoured at alkaline pH values, is carried out by a) the precipitation of phosphate ions with magnesium and/or ammonium ions and b) the sorption of ammonium by Na- and K-zeolites. MgO(s) promoted the stabilization of phosphate as bobierrite (Mg3(PO4)2(s)) or struvite (MgNH4PO4(s)) depending on the applied dose. Doses with the stoichiometric molar ratio of Mg/P promote the formation of bobierrite, while molar ratios higher than 3 favour the formation of struvite. Na zeolites (NaP1-NA, NaP1-IQE) demonstrated efficiency on ammonium stabilization between 60±2 (for 15gZ/L) to 90±3% (for 50gZ/L). The ammonium recovery efficiency is limited by the zeolite sorption capacity. If the target of the fertilizing criteria should include K, then the use of a K-zeolite (e.g., 5AH-IQE) provides a good solution. The optimum pH for the precipitation of struvite and bobierrite is 9.5 and the optimum pH for ammonium removal is between 4 and 8.5. N is present in higher concentrations (up 0.7-1gNH4+/L) when pH is ranged between 8.2 and 8.6. The ammonium recovery ratios were better than those previously reported using only magnesium oxide or even a more expensive reagent as newberrite (MgHPO4(s)). The recovery mechanisms described generate low-solubility stabilized nutrients forms that potentially can be applied as slow-release fertilizers in agriculture. Thus, the use in agriculture of blends of digested sludge with low-solubility stabilized nutrients forms will improve soils quality properties in terms of organic matter and nutrients availability.

19.
J Colloid Interface Sci ; 310(1): 35-46, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17367802

RESUMEN

Polymeric supports are presented as an alternative to granular activated carbon (GAC) for organic contaminant removal from groundwater using permeable reactive barriers (PRB). The search for suitable polymeric sorbents for hydrocarbon extraction from aqueous streams has prompted the synthesis of new resins incorporating new functionalities or modifying the polymer network properties that solve many of the existing problems. Between them, the new type of polymeric sorbents Macronet Hypersol containing a styrene-divinylbenzene macroporous hyperreticulated network has been evaluated. Because of their potential sorptive properties, tests were conducted to determine the feasibility of using them as a low-cost reactive material for groundwater applications. The present work describes the sorption of six polycyclic hydrocarbons (PAHs) from aqueous solution onto both Macronet polymeric sorbent MN200 and granular activated carbon. Batch experiments were performed to determine loading rates of a family of PAHs (naphthalene, fluorene, anthracene, acenaphthene, pyrene, and fluoranthene), from a simple two-rings PAH (naphthalene) up to a four-ring PAH (pyrene). The behavior of a non-functionalized Macronet support (MN200) was compared with the behavior of a recognized material, granular activated carbon (GAC). Analyses of the respective rate data with three theoretical models (pseudo-first- and pseudo-second-order reaction models and the Elovich model) were used to describe the PAH sorption kinetics. Sorption rate constants were determined by graphical analysis of the proposed models. The study showed that sorption systems followed a pseudo-first-order reaction model, although the pseudo-second-order reaction model provides an acceptable description of the sorption process. Graphical analysis showed that the sorption process with activated carbon is a more complex process than the one observed for hyper-cross-linked polymers (MN200). A simulation of the barrier thickness needed to treat a PAH-polluted plume showed that 0.1-1 m of sorption media is enough even for high water fluxes such as 0.1-2 m(3)/m(2)/day for both sorbents.


Asunto(s)
Carbón Orgánico/química , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Cinética , Poliestirenos/química , Contaminantes Químicos del Agua/aislamiento & purificación
20.
Sci Total Environ ; 584-585: 244-251, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28161679

RESUMEN

The integration of up-concentration processes to increase the efficiency of primary sedimentation, as a solution to achieve energy neutral wastewater treatment plants, requires further post-treatment due to the missing ammonium removal stage. This study evaluated the use of zeolites as a post-treatment step, an alternative to the biological removal process. A natural granular clinoptilolite zeolite was evaluated as a sorbent media to remove low levels (up to 100mg-N/L) of ammonium from treated wastewater using batch and fixed bed columns. After being activated to the Na-form (Z-Na), the granular zeolite shown an ammonium exchange capacity of 29±0.8mgN-NH4+/g in single ammonium solutions and 23±0.8mgN-NH4+/g in treated wastewater simulating up-concentration effluent at pH=8. The equilibrium removal data were well described by the Langmuir isotherm. The ammonium adsorption into zeolites is a very fast process when compared with polymeric materials (zeolite particle diffusion coefficient around 3×10-12m2/s). Column experiments with solutions containing 100mgN-NH4+/L provide effective sorption and elution rates with concentration factors between 20 and 30 in consecutive operation cycles. The loaded zeolite was regenerated using 2g NaOH/L solution and the rich ammonium/ammonia concentrates 2-3g/L in NaOH were used in a liquid-liquid membrane contactor system in a closed-loop configuration with nitric and phosphoric acid as stripping solutions. The ammonia recovery ratio exceeded 98%. Ammonia nitrate and di-ammonium phosphate concentrated solutions reached up to 2-5% wt. of N.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA