RESUMEN
Near-infrared (NIR) genetically encoded calcium ion (Ca2+) indicators (GECIs) can provide advantages over visible wavelength fluorescent GECIs in terms of reduced phototoxicity, minimal spectral cross talk with visible light excitable optogenetic tools and fluorescent probes, and decreased scattering and absorption in mammalian tissues. Our previously reported NIR GECI, NIR-GECO1, has these advantages but also has several disadvantages including lower brightness and limited fluorescence response compared to state-of-the-art visible wavelength GECIs, when used for imaging of neuronal activity. Here, we report 2 improved NIR GECI variants, designated NIR-GECO2 and NIR-GECO2G, derived from NIR-GECO1. We characterized the performance of the new NIR GECIs in cultured cells, acute mouse brain slices, and Caenorhabditis elegans and Xenopus laevis in vivo. Our results demonstrate that NIR-GECO2 and NIR-GECO2G provide substantial improvements over NIR-GECO1 for imaging of neuronal Ca2+ dynamics.
Asunto(s)
Calcio/metabolismo , Imagen Óptica/métodos , Animales , Encéfalo/metabolismo , Caenorhabditis elegans/metabolismo , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Indicadores y Reactivos , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Ratones , Miocitos Cardíacos/metabolismo , Neuronas/metabolismo , Optogenética , Ingeniería de Proteínas , Espectroscopía Infrarroja Corta , Xenopus laevis/metabolismoRESUMEN
IMPORTANCE: Positron emission tomography (PET) imaging now allows in vivo visualization of both neuropathologic hallmarks of Alzheimer disease (AD): amyloid-ß (Aß) plaques and tau neurofibrillary tangles. Observing their progressive accumulation in the brains of clinically normal older adults is critically important to understand the pathophysiologic cascade leading to AD and to inform the choice of outcome measures in prevention trials. OBJECTIVE: To assess the associations among Aß, tau, and cognition, measured during different observation periods for 7 years. DESIGN, SETTING, AND PARTICIPANTS: Prospective cohort study conducted between 2010 and 2017 at the Harvard Aging Brain Study, Boston, Massachusetts. The study enrolled 279 clinically normal participants. An additional 90 individuals were approached but declined the study or did not meet the inclusion criteria. In this report, we analyzed data from 60 participants who had multiple Aß and tau PET observations available on October 31, 2017. MAIN OUTCOMES AND MEASURES: A median of 3 Pittsburgh compound B-PET (Aß, 2010-2017) and 2 flortaucipir-PET (tau, 2013-2017) images were collected. We used initial PET and slope data, assessing the rates of change in Aß and tau, to measure cognitive changes. Cognition was evaluated annually using the Preclinical Alzheimer Cognitive Composite (2010-2017). Annual consensus meetings evaluated progression to mild cognitive impairment. RESULTS: Of the 60 participants, 35 were women (58%) and 25 were men (42%); median age at inclusion was 73 years (range, 65-85 years). Seventeen participants (28%) exhibited an initial high Aß burden. An antecedent rise in Aß was associated with subsequent changes in tau (1.07 flortaucipir standardized uptake value ratios [SUVr]/PiB-SUVr; 95% CI, 0.13-3.46; P = .02). Tau changes were associated with cognitive changes (-3.28 z scores/SUVR; 95% CI, -6.67 to -0.91; P = .001), covarying baseline Aß and tau. Tau changes were greater in the participants who progressed to mild cognitive impairment (n = 6) than in those who did not (n = 11; 0.05 SUVr per year; 95% CI, 0.03-0.07; P = .001). A serial mediation model demonstrated that the association between initial Aß and final cognition, measured 7 years later, was mediated by successive changes in Aß and tau. CONCLUSIONS AND RELEVANCE: We identified sequential changes in normal older adults, from Aß to tau to cognition, after which the participants with high Aß with greater tau increase met clinical criteria for mild cognitive impairment. These findings highlight the importance of repeated tau-PET observations to track disease progression and the importance of repeated amyloid-PET observations to detect the earliest AD pathologic changes.