Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 145(1): 39-53, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21376383

RESUMEN

Treatment of tuberculosis, a complex granulomatous disease, requires long-term multidrug therapy to overcome tolerance, an epigenetic drug resistance that is widely attributed to nonreplicating bacterial subpopulations. Here, we deploy Mycobacterium marinum-infected zebrafish larvae for in vivo characterization of antitubercular drug activity and tolerance. We describe the existence of multidrug-tolerant organisms that arise within days of infection, are enriched in the replicating intracellular population, and are amplified and disseminated by the tuberculous granuloma. Bacterial efflux pumps that are required for intracellular growth mediate this macrophage-induced tolerance. This tolerant population also develops when Mycobacterium tuberculosis infects cultured macrophages, suggesting that it contributes to the burden of drug tolerance in human tuberculosis. Efflux pump inhibitors like verapamil reduce this tolerance. Thus, the addition of this currently approved drug or more specific efflux pump inhibitors to standard antitubercular therapy should shorten the duration of curative treatment.


Asunto(s)
Tolerancia a Medicamentos , Macrófagos/microbiología , Mycobacterium marinum/fisiología , Mycobacterium tuberculosis/fisiología , Tuberculosis/microbiología , Animales , Antituberculosos/uso terapéutico , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Granuloma/fisiopatología , Humanos , Larva/microbiología , Moduladores del Transporte de Membrana/farmacología , Proteínas de Transporte de Membrana/metabolismo , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/patología , Infecciones por Mycobacterium no Tuberculosas/fisiopatología , Mycobacterium marinum/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Tuberculosis/patología , Tuberculosis/fisiopatología , Verapamilo/farmacología , Pez Cebra/microbiología
2.
Nature ; 505(7482): 218-22, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24336213

RESUMEN

The evolutionary survival of Mycobacterium tuberculosis, the cause of human tuberculosis, depends on its ability to invade the host, replicate, and transmit infection. At its initial peripheral infection site in the distal lung airways, M. tuberculosis infects macrophages, which transport it to deeper tissues. How mycobacteria survive in these broadly microbicidal cells is an important question. Here we show in mice and zebrafish that M. tuberculosis, and its close pathogenic relative Mycobacterium marinum, preferentially recruit and infect permissive macrophages while evading microbicidal ones. This immune evasion is accomplished by using cell-surface-associated phthiocerol dimycoceroserate (PDIM) lipids to mask underlying pathogen-associated molecular patterns (PAMPs). In the absence of PDIM, these PAMPs signal a Toll-like receptor (TLR)-dependent recruitment of macrophages that produce microbicidal reactive nitrogen species. Concordantly, the related phenolic glycolipids (PGLs) promote the recruitment of permissive macrophages through a host chemokine receptor 2 (CCR2)-mediated pathway. Thus, we have identified coordinated roles for PDIM, known to be essential for mycobacterial virulence, and PGL, which (along with CCR2) is known to be associated with human tuberculosis. Our findings also suggest an explanation for the longstanding observation that M. tuberculosis initiates infection in the relatively sterile environment of the lower respiratory tract, rather than in the upper respiratory tract, where resident microflora and inhaled environmental microbes may continually recruit microbicidal macrophages through TLR-dependent signalling.


Asunto(s)
Evasión Inmune , Macrófagos/microbiología , Lípidos de la Membrana/metabolismo , Mycobacterium/fisiología , Animales , Femenino , Glucolípidos/inmunología , Glucolípidos/metabolismo , Lípidos/biosíntesis , Lípidos/inmunología , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mycobacterium/patogenicidad , Mycobacterium tuberculosis/patogenicidad , Mycobacterium tuberculosis/fisiología , Receptores CCR2/metabolismo , Receptores Toll-Like/inmunología , Receptores Toll-Like/metabolismo , Virulencia/inmunología , Pez Cebra/microbiología
3.
Cell Host Microbe ; 20(2): 250-8, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27512905

RESUMEN

The blockade of phagolysosomal fusion is considered a critical mycobacterial strategy to survive in macrophages. However, viable mycobacteria have been observed in phagolysosomes during infection of cultured macrophages, and mycobacteria have the virulence determinant MarP, which confers acid resistance in vitro. Here we show in mice and zebrafish that innate macrophages overcome mycobacterial lysosomal avoidance strategies to rapidly deliver a substantial proportion of infecting bacteria to phagolysosomes. Exploiting the optical transparency of the zebrafish, we tracked the fates of individual mycobacteria delivered to phagosomes versus phagolysosomes and discovered that bacteria survive and grow in phagolysosomes, though growth is slower. MarP is required specifically for phagolysosomal survival, making it an important determinant for the establishment of mycobacterial infection in their hosts. Our work suggests that if pathogenic mycobacteria fail to prevent lysosomal trafficking, they tolerate the resulting acidic environment of the phagolysosome to establish infection.


Asunto(s)
Antibacterianos/metabolismo , Ácidos Carboxílicos/metabolismo , Lisosomas/microbiología , Macrófagos/microbiología , Viabilidad Microbiana/efectos de los fármacos , Mycobacterium marinum/fisiología , Estrés Fisiológico , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Ratones Endogámicos C57BL , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/efectos de los fármacos , Mycobacterium marinum/crecimiento & desarrollo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Pez Cebra
4.
Cell Rep ; 2(1): 175-84, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22840407

RESUMEN

Treatment of tuberculosis, like other infectious diseases, is increasingly hindered by the emergence of drug resistance. Drug discovery efforts would be facilitated by facile screening tools that incorporate the complexities of human disease. Mycobacterium marinum-infected zebrafish larvae recapitulate key aspects of tuberculosis pathogenesis and drug treatment. Here, we develop a model for rapid in vivo drug screening using fluorescence-based methods for serial quantitative assessment of drug efficacy and toxicity. We provide proof-of-concept that both traditional bacterial-targeting antitubercular drugs and newly identified host-targeting drugs would be discovered through the use of this model. We demonstrate the model's utility for the identification of synergistic combinations of antibacterial drugs and demonstrate synergy between bacterial- and host-targeting compounds. Thus, the platform can be used to identify new antibacterial agents and entirely new classes of drugs that thwart infection by targeting host pathways. The methods developed here should be widely applicable to small-molecule screens for other infectious and noninfectious diseases.


Asunto(s)
Antituberculosos/aislamiento & purificación , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Crianza de Animales Domésticos , Animales , Antibacterianos/administración & dosificación , Antibacterianos/aislamiento & purificación , Antituberculosos/administración & dosificación , Automatización de Laboratorios , Crioanestesia/métodos , Crioanestesia/veterinaria , Descubrimiento de Drogas/instrumentación , Sinergismo Farmacológico , Fluorometría/instrumentación , Fluorometría/métodos , Ensayos Analíticos de Alto Rendimiento/instrumentación , Larva/crecimiento & desarrollo , Larva/fisiología , Modelos Biológicos , Reproducibilidad de los Resultados , Factores de Tiempo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología
5.
J Infect Dis ; 198(12): 1851-5, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18983252

RESUMEN

Although tuberculous granulomas, which are composed of infected macrophages and other immune cells, have long been considered impermeable structures, recent studies have shown that superinfecting Mycobacterium marinum traffic rapidly to established fish and frog granulomas by host-mediated and Mycobacterium-directed mechanisms. The present study shows that superinfecting Mycobacterium tuberculosis and Mycobacterium bovis bacille Calmette-Guérin similarly home to established granulomas in mice. Furthermore, 2 prominent mycobacterial virulence determinants, Erp and ESX-1, do not affect this cellular trafficking. These findings suggest that homing of infected macrophages to sites of infection is a general feature of the pathogenesis of tuberculosis and has important consequences for therapeutic strategies.


Asunto(s)
Proteínas Bacterianas/genética , Granuloma/microbiología , Infecciones por Mycobacterium/microbiología , Mycobacterium bovis/fisiología , Mycobacterium tuberculosis/fisiología , Sobreinfección , Animales , Proteínas Bacterianas/metabolismo , Quimiotaxis , Femenino , Regulación Bacteriana de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Mycobacterium bovis/genética , Mycobacterium bovis/patogenicidad , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Virulencia
6.
Infect Immun ; 74(6): 3125-33, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16714540

RESUMEN

The Mycobacterium tuberculosis exported repetitive protein (Erp) is a virulence determinant required for growth in cultured macrophages and in vivo. To better understand the role of Erp in Mycobacterium pathogenesis, we generated a mutation in the erp homologue of Mycobacterium marinum, a close genetic relative of M. tuberculosis. erp-deficient M. marinum was growth attenuated in cultured macrophage monolayers and during chronic granulomatous infection of leopard frogs, suggesting that Erp function is similarly required for the virulence of both M. tuberculosis and M. marinum. To pinpoint the step in infection at which Erp is required, we utilized a zebrafish embryo infection model that allows M. marinum infections to be visualized in real-time, comparing the erp-deficient strain to a DeltaRD1 mutant whose stage of attenuation was previously characterized in zebrafish embryos. A detailed microscopic examination of infected embryos revealed that bacteria lacking Erp were compromised very early in infection, failing to grow and/or survive upon phagocytosis by host macrophages. In contrast, DeltaRD1 mutant bacteria grow normally in macrophages but fail to induce host macrophage aggregation and subsequent cell-to-cell spread. Consistent with these in vivo findings, erp-deficient but not RD1-deficient bacteria exhibited permeability defects in vitro, which may be responsible for their specific failure to survive in host macrophages.


Asunto(s)
Proteínas Bacterianas/fisiología , Mycobacterium marinum/patogenicidad , Animales , Pared Celular , Células Cultivadas , Embrión de Mamíferos/microbiología , Embrión no Mamífero , Masculino , Ratones , Mycobacterium marinum/crecimiento & desarrollo , Permeabilidad , Rana pipiens , Virulencia , Pez Cebra
7.
Curr Protoc Microbiol ; Chapter 10: Unit 10B.2, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18770575

RESUMEN

Mycobacterium marinum infection of poikilothermic animals, such as fish and frogs, results in chronic granulomatous diseases that bear many similarities to mycobacterioses in mammals, including tuberculosis. This unit describes three animal models of M. marinum infection that can be used to study basic aspects of Mycobacterium-host interactions and granuloma development, as well as trafficking of immune cells in host tissues. Protocols are included that describe intraperitoneal infection of adult leopard frogs (Rana pipiens) and zebrafish (Danio rerio). Protocols also describe subsequent monitoring of the infection by enumeration of bacterial cfu, mean time to death, or visual examination of infected tissue using both conventional histological stains and fluorescence microscopy of fluorescently marked bacteria. Furthermore, protocols are included that describe the infection of embryonic zebrafish and the subsequent analysis of the infection in real time using DIC and fluorescence microscopy.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones por Mycobacterium no Tuberculosas/mortalidad , Infecciones por Mycobacterium no Tuberculosas/patología , Mycobacterium marinum/patogenicidad , Rana pipiens/microbiología , Pez Cebra/microbiología , Animales , Embrión no Mamífero/microbiología , Interacciones Huésped-Patógeno , Humanos , Infecciones por Mycobacterium no Tuberculosas/inmunología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/aislamiento & purificación , Pez Cebra/embriología
8.
Nat Immunol ; 5(8): 828-35, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15220915

RESUMEN

A central paradox of tuberculosis immunity is that reinfection and bacterial persistence occur despite vigorous host immune responses concentrated in granulomas, which are organized structures that form in response to infection. Prevailing models attribute reinfection and persistence to bacterial avoidance of host immunity via establishment of infection outside primary granulomas. Alternatively, persistence is attributed to a gradual bacterial adaptation to evolving host immune responses. We show here that superinfecting Mycobacterium marinum traffic rapidly into preexisting granulomas, including their caseous (necrotic) centers, through specific mycobacterium-directed and host cell-mediated processes, yet adapt quickly to persist long term therein. These findings demonstrate a failure of established granulomas, concentrated foci of activated macrophages and antigen-specific immune effector cells, to eradicate newly deposited mycobacteria not previously exposed to host responses.


Asunto(s)
Granuloma/inmunología , Infecciones por Mycobacterium no Tuberculosas/inmunología , Sobreinfección/inmunología , Tuberculosis/inmunología , Animales , Modelos Animales de Enfermedad , Productos del Gen gag/biosíntesis , Hígado/inmunología , Hígado/microbiología , Hígado/patología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Mycobacterium marinum/inmunología , Rana pipiens , Infecciones por Salmonella/inmunología , Salmonella arizonae/inmunología , Bazo/inmunología , Bazo/microbiología , Bazo/patología , Tuberculosis/patología , Pez Cebra
9.
Annu Rev Microbiol ; 57: 641-76, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14527294

RESUMEN

Pathogenic mycobacteria, including the causative agents of tuberculosis and leprosy, are responsible for considerable morbidity and mortality worldwide. A hallmark of these pathogens is their tendency to establish chronic infections that produce similar pathologies in a variety of hosts. During infection, mycobacteria reside in macrophages and induce the formation of granulomas, organized immune complexes of differentiated macrophages, lymphocytes, and other cells. This review summarizes our understanding of Mycobacterium-host cell interactions, the bacterial-granuloma interface, and mechanisms of bacterial virulence and persistence. In addition, we highlight current controversies and unanswered questions in these areas.


Asunto(s)
Macrófagos/microbiología , Infecciones por Mycobacterium/microbiología , Mycobacterium/fisiología , Animales , Modelos Animales de Enfermedad , Genes Bacterianos , Granuloma/inmunología , Granuloma/microbiología , Humanos , Mycobacterium/patogenicidad , Complejo Mycobacterium avium/patogenicidad , Complejo Mycobacterium avium/fisiología , Mycobacterium leprae/patogenicidad , Mycobacterium leprae/fisiología , Mycobacterium marinum/patogenicidad , Mycobacterium marinum/fisiología , Mycobacterium tuberculosis/patogenicidad , Mycobacterium tuberculosis/fisiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA