Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Biol Chem ; 299(7): 104855, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224961

RESUMEN

Therapeutic strategies targeting nuclear receptors (NRs) beyond their endogenous ligand binding pocket have gained significant scientific interest driven by a need to circumvent problems associated with drug resistance and pharmacological profile. The hub protein 14-3-3 is an endogenous regulator of various NRs, providing a novel entry point for small molecule modulation of NR activity. Exemplified, 14-3-3 binding to the C-terminal F-domain of the estrogen receptor alpha (ERα), and small molecule stabilization of the ERα/14-3-3ζ protein complex by the natural product Fusicoccin A (FC-A), was demonstrated to downregulate ERα-mediated breast cancer proliferation. This presents a novel drug discovery approach to target ERα; however, structural and mechanistic insights into ERα/14-3-3 complex formation are lacking. Here, we provide an in-depth molecular understanding of the ERα/14-3-3ζ complex by isolating 14-3-3ζ in complex with an ERα protein construct comprising its ligand-binding domain (LBD) and phosphorylated F-domain. Bacterial co-expression and co-purification of the ERα/14-3-3ζ complex, followed by extensive biophysical and structural characterization, revealed a tetrameric complex between the ERα homodimer and the 14-3-3ζ homodimer. 14-3-3ζ binding to ERα, and ERα/14-3-3ζ complex stabilization by FC-A, appeared to be orthogonal to ERα endogenous agonist (E2) binding, E2-induced conformational changes, and cofactor recruitment. Similarly, the ERα antagonist 4-hydroxytamoxifen inhibited cofactor recruitment to the ERα LBD while ERα was bound to 14-3-3ζ. Furthermore, stabilization of the ERα/14-3-3ζ protein complex by FC-A was not influenced by the disease-associated and 4-hydroxytamoxifen resistant ERα-Y537S mutant. Together, these molecular and mechanistic insights provide direction for targeting ERα via the ERα/14-3-3 complex as an alternative drug discovery approach.


Asunto(s)
Proteínas 14-3-3 , Receptor alfa de Estrógeno , Humanos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Ligandos , Tamoxifeno/farmacología , Unión Proteica/efectos de los fármacos , Descubrimiento de Drogas , Antagonistas de Estrógenos/farmacología
2.
Chembiochem ; 25(14): e202400214, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38738787

RESUMEN

Protein-protein interactions (PPIs) are of utmost importance for maintenance of cellular homeostasis. Herein, a central role can be found for 14-3-3 proteins. These hub-proteins are known to bind hundreds of interaction partners, thereby regulating their activity, localization, and/or stabilization. Due to their ability to bind a large variety of client proteins, studies of 14-3-3 protein complexes flourished over the last decades, aiming to gain greater molecular understanding of these complexes and their role in health and disease. Because of their crucial role within the cell, 14-3-3 protein complexes are recognized as highly interesting therapeutic targets, encouraging the discovery of small molecule modulators of these PPIs. We discuss various examples of 14-3-3-mediated regulation of its binding partners on a mechanistic level, highlighting the versatile and multi-functional role of 14-3-3 within the cell. Furthermore, an overview is given on the development of stabilizers of 14-3-3 protein complexes, from initially used natural products to fragment-based approaches. These studies show the potential of 14-3-3 PPI stabilizers as novel agents in drug discovery and as tool compounds to gain greater molecular understanding of the role of 14-3-3-based protein regulation.


Asunto(s)
Proteínas 14-3-3 , Unión Proteica , Bibliotecas de Moléculas Pequeñas , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/química , Humanos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/metabolismo
3.
Chembiochem ; 25(1): e202300636, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37902676

RESUMEN

Protein-protein interaction (PPI) modulation is a promising approach in drug discovery with the potential to expand the 'druggable' proteome and develop new therapeutic strategies. While there have been significant advancements in methodologies for developing PPI inhibitors, there is a relative scarcity of literature describing the 'bottom-up' development of PPI stabilizers (Molecular Glues). The hub protein 14-3-3 and its interactome provide an excellent platform for exploring conceptual approaches to PPI modulation, including evolution of chemical matter for Molecular Glues. In this study, we employed a fragment extension strategy to discover stabilizers for the complex of 14-3-3 protein and an Estrogen Receptor alpha-derived peptide (ERα). A focused library of analogues derived from an amidine-substituted thiophene fragment enhanced the affinity of the 14-3-3/ERα complex up to 6.2-fold. Structure-activity relationship (SAR) analysis underscored the importance of the newly added, aromatic side chain with a certain degree of rigidity. X-ray structural analysis revealed a unique intermolecular π-π stacking binding mode of the most active analogues, resulting in the simultaneous binding of two molecules to the PPI binding pocket. Notably, analogue 11 displayed selective stabilization of the 14-3-3/ERα complex.


Asunto(s)
Proteínas 14-3-3 , Receptor alfa de Estrógeno , Proteínas 14-3-3/química , Unión Proteica , Descubrimiento de Drogas/métodos , Relación Estructura-Actividad
4.
J Am Chem Soc ; 145(12): 6741-6752, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36926879

RESUMEN

Molecules that stabilize protein-protein interactions (PPIs) are invaluable as tool compounds for biophysics and (structural) biology, and as starting points for molecular glue drug discovery. However, identifying initial starting points for PPI stabilizing matter is highly challenging, and chemical optimization is labor-intensive. Inspired by chemical crosslinking and reversible covalent fragment-based drug discovery, we developed an approach that we term "molecular locks" to rapidly access molecular glue-like tool compounds. These dual-covalent small molecules reversibly react with a nucleophilic amino acid on each of the partner proteins to dynamically crosslink the protein complex. The PPI between the hub protein 14-3-3 and estrogen-related receptor γ (ERRγ) was used as a pharmacologically relevant case study. Based on a focused library of dual-reactive small molecules, a molecular glue tool compound was rapidly developed. Biochemical assays and X-ray crystallographic studies validated the ternary covalent complex formation and overall PPI stabilization via dynamic covalent crosslinking. The molecular lock approach is highly selective for the specific 14-3-3/ERRγ complex, over other 14-3-3 complexes. This selectivity is driven by the interplay of molecular reactivity and molecular recognition of the composite PPI binding interface. The long lifetime of the dual-covalent locks enabled the selective stabilization of the 14-3-3/ERRγ complex even in the presence of several other competing 14-3-3 clients with higher intrinsic binding affinities. The molecular lock approach enables systematic, selective, and potent stabilization of protein complexes to support molecular glue drug discovery.


Asunto(s)
Descubrimiento de Drogas , Receptores de Estrógenos , Humanos , Unión Proteica , Proteínas 14-3-3/química , Aminoácidos/metabolismo
5.
Bioorg Med Chem Lett ; 61: 128591, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35114371

RESUMEN

Virtual screening identified N-(6-((4-bromobenzyl)amino)hexyl)-3,5-bis(trifluoromethyl)benzenesulfonamide (1) a lead compound that bound to the S100A2-p53 binding groove. S100A2 is a Ca2+ binding protein with implications in cell signaling and is known to be upregulated in pancreatic cancer. It is a validated pancreatic cancer drug target. Lead 1, inhibited the growth of the MiaPaCa-2 pancreatic cancer cell line (GI50 = 2.97 µM). Focused compound libraries were developed to explore the SAR of this compound class with 4 libraries and 43 compounds total. Focused library (Library 1) development identified lipophillic sulfonamides as preferred for MiaPaCa-2 activity, with -CF3 and -C(CH3)3 substituents well tolerated (MiaPaCa-2 GI50 < 6 µM). Contraction of the hexylamino spacer to ethyl (Library 2) and propyl (Library 3) proved beneficial to activity against a broad spectrum panel of cancer cell lines: HT29 (lung), MCF-7 (breast), A2780 (ovarian), H460 (colon), A431 (skin), Du145 (prostate), BE2-C (neuroblastoma), U87 and SJ-G2 (glioblastoma) (cohort-1); and a pancreatic cancer cell line panel: MiaPaCa-2, BxPC-3, AsPC-1, Capan-2, HPAC and PANC-1 (cohort-2). With a marked preference for a propyl linker the observed GI50 values ranged from 1.4 to 30 µM against cohort-1 and 1.4-30 µM against cohort-2 cell lines. In Library 4 the terminal aromatic moiety was explored with 4-substituted analogues preferred (with activity of 48 (4-Cl) > 47 (3-Cl) > 46 (2-Cl)) against the cell lines examined. The introduction of bulky aromatic moieties was well tolerated, e.g. dihydrobenzo[b][1,4]dioxine (51) returned cohort-2 GI50 values of 1.2-3.4 µM. In all instances the observed docked binding poses and binding scores were consistent with the observed cytotoxicity. This in turn supports, but does not prove, that these analogues function via S100A2-p53 binding groove inhibition.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Neoplasias Pancreáticas/patología , Relación Estructura-Actividad
6.
Molecules ; 27(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408448

RESUMEN

Five focused compound libraries (forty-nine compounds), based on prior studies in our laboratory were synthesized and screened for antibiotic and anti-fungal activity against S. aureus, E. coli, K. pneumoniae, P. aeruginosa, A. baumannii, C. albicans and C. neoformans. Low levels of activity, at the initial screening concentration of 32 µg/mL, were noted with analogues of (Z)-2-(3,4-dichlorophenyl)-3-phenylacrylonitriles which made up the first two focused libraries produced. The most promising analogues possessing additional substituents on the terminal aromatic ring of the synthesised acrylonitriles. Modifications of the terminal aromatic moiety were explored through epoxide installation flowed by flow chemistry mediated ring opening aminolysis with discreet sets of amines to the corresponding amino alcohols. Three new focused libraries were developed from substituted anilines, cyclic amines, and phenyl linked heterocyclic amines. The aniline-based compounds were inactive against the bacterial and fungal lines screened. The introduction of a cyclic, such as piperidine, piperazine, or morpholine, showed >50% inhibition when evaluated at 32 µg/mL compound concentration against methicillin-resistant Staphylococcus aureus. Examination of the terminal aromatic substituent via oxirane aminolysis allowed for the synthesis of three new focused libraries of afforded amino alcohols. Aromatic substituted piperidine or piperazine switched library activity from antibacterial to anti-fungal activity with ((Z)-2-(3,4-dichlorophenyl)-3-(4-(2-hydroxy-3-(4-methylpiperazin-1-yl)propoxy)phenyl)acrylonitrile), ((Z)-2-(3,4-dichlorophenyl)-3-(4-(2-hydroxy-3-(4-(4-hydroxyphenyl)piperazin-1-yl)propoxy)-phenyl)acrylonitrile) and ((Z)-3-(4-(3-(4-cyclohexylpiperazin-1-yl)-2-hydroxypropoxy)-phenyl)-2-(3,4-dichlorophenyl)-acrylonitrile) showing >95% inhibition of Cryptococcus neoformans var. grubii H99 growth at 32 µg/mL. While (Z)-3-(4-(3-(cyclohexylamino)-2-hydroxypropoxy)phenyl)-2-(3,4-dichlorophenyl)-acrylonitrile, (S,Z)-2-(3,4-dichlorophenyl)-3-(4-(2-hydroxy-3-(piperidin-1-yl)propoxy)phenyl)acrylonitrile, (R,Z)-2-(3,4-dichlorophenyl)-3-(4-(2-hydroxy-3-(piperidin-1-yl)propoxy)phenyl)acrylonitrile, (Z)-2-(3,4-dichlorophenyl)-3-(4-(2-hydroxy-3-(D-11-piperidin-1-yl)propoxy)phenyl)-acrylonitrile, and (Z)-3-(4-(3-(4-cyclohexylpiperazin-1-yl)-2-hydroxypropoxy)-phenyl)-2-(3,4-dichlorophenyl)-acrylonitrile 32 µg/mL against Staphylococcus aureus.


Asunto(s)
Acrilonitrilo , Staphylococcus aureus Resistente a Meticilina , Acrilonitrilo/química , Amino Alcoholes , Antibacterianos/química , Antifúngicos/química , Escherichia coli , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Piperazina , Pseudomonas aeruginosa , Staphylococcus aureus , Relación Estructura-Actividad
7.
J Am Chem Soc ; 143(22): 8454-8464, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34047554

RESUMEN

The stabilization of protein complexes has emerged as a promising modality, expanding the number of entry points for novel therapeutic intervention. Targeting proteins that mediate protein-protein interactions (PPIs), such as hub proteins, is equally challenging and rewarding as they offer an intervention platform for a variety of diseases, due to their large interactome. 14-3-3 hub proteins bind phosphorylated motifs of their interaction partners in a conserved binding channel. The 14-3-3 PPI interface is consequently only diversified by its different interaction partners. Therefore, it is essential to consider, additionally to the potency, also the selectivity of stabilizer molecules. Targeting a lysine residue at the interface of the composite 14-3-3 complex, which can be targeted explicitly via aldimine-forming fragments, we studied the de novo design of PPI stabilizers under consideration of potential selectivity. By applying cooperativity analysis of ternary complex formation, we developed a reversible covalent molecular glue for the 14-3-3/Pin1 interaction. This small fragment led to a more than 250-fold stabilization of the 14-3-3/Pin1 interaction by selective interfacing with a unique tryptophan in Pin1. This study illustrates how cooperative complex formation drives selective PPI stabilization. Further, it highlights how specific interactions within a hub proteins interactome can be stabilized over other interactions with a common binding motif.


Asunto(s)
Proteínas 14-3-3/química , Iminas/química , Humanos , Modelos Moleculares , Estructura Molecular , Peptidilprolil Isomerasa de Interacción con NIMA/química , Estabilidad Proteica
8.
Med Res Rev ; 40(2): 469-494, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-30004586

RESUMEN

There are 27 small molecule protein-protein interaction (PPI) modulators in Phase I, II, and III clinical trials targeting cancer, viruses, autoimmune disorders, and as immune suppression agents. Targeting PPIs as an antibiotic drug discovery strategy remains in relative infancy by comparison. However, a number of molecules are in development which target PPI within the replisome, divisome, transcriptome, and translatome are showing significant promise at the medicinal chemistry stage of drug development. Hence, the success of future PPI agents as antibiotics will build upon the techniques and design strategies of these molecules.


Asunto(s)
Antibacterianos/farmacología , Química Farmacéutica , Mapeo de Interacción de Proteínas , Animales , Ensayos Clínicos como Asunto , Descubrimiento de Drogas , Humanos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
9.
Angew Chem Int Ed Engl ; 59(48): 21520-21524, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32816380

RESUMEN

Small-molecule stabilization of protein-protein interactions (PPIs) is a promising concept in drug discovery, however the question how to identify or design chemical starting points in a "bottom-up" approach is largely unanswered. We report a novel concept for identifying initial chemical matter for PPI stabilization based on imine-forming fragments. The imine bond offers a covalent anchor for site-directed fragment targeting, whereas its transient nature enables efficient analysis of structure-activity relationships. This bond enables fragment identification and optimisation using protein crystallography. We report novel fragments that bind specifically to a lysine at the PPI interface of the p65-subunit-derived peptide of NF-κB with the adapter protein 14-3-3. Those fragments that subsequently establish contacts with the p65-derived peptide, rather than with 14-3-3, efficiently stabilize the 14-3-3/p65 complex and offer novel starting points for molecular glues.


Asunto(s)
Proteínas 14-3-3/química , Iminas/química , Bibliotecas de Moléculas Pequeñas/química , Factor de Transcripción ReIA/química , Estructura Molecular , Unión Proteica , Estabilidad Proteica , Relación Estructura-Actividad
10.
Bioorg Med Chem Lett ; 27(2): 162-167, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27964882

RESUMEN

Formation of highly possessive antitermination complexes is crucial for the efficient transcription of stable RNA in all bacteria. A key step in the formation of these complexes is the protein-protein interaction (PPI) between N-utilisation substances (Nus) B and E and thus this PPI offers a novel target for a new antibiotic class. A pharmacophore developed via a secondary structure epitope approach was utilised to perform an in silico screen of the mini-Maybridge library (56,000 compounds) which identified 25 hits of which five compounds were synthetically tractable leads. Here we report the synthesis of these five leads and their biological evaluation as potential inhibitors of the NusB-NusE PPI. Two chemically diverse scaffolds were identified to be low micro molar potent PPI inhibitors, with compound (4,6-bis(2',4',3.4 tetramethoxyphenyl))pyrimidine-2-sulphonamido-N-4-acetamide 1 and N,N'-[1,4-butanediylbis(oxy-4,1-phenylene)]bis(N-ethyl)urea 3 exhibiting IC50 values of 6.1µM and 19.8µM, respectively. These inhibitors were also shown to be moderate inhibitors of Gram-positive Bacillus subtilis and Gram-negative Escherichia coli growth.


Asunto(s)
Antibacterianos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas Ribosómicas/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Antibacterianos/síntesis química , Bacillus subtilis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/química , Enlace de Hidrógeno , Oligopéptidos/química , Oligopéptidos/farmacología , Éteres Fenílicos/síntesis química , Éteres Fenílicos/farmacología , Unión Proteica , Pirimidinas/síntesis química , Pirimidinas/farmacología , Proteínas Ribosómicas/química , Sulfonamidas/síntesis química , Sulfonamidas/farmacología , Factores de Transcripción/química
11.
Org Biomol Chem ; 13(26): 7119-30, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26073166

RESUMEN

There has been an increasing body of evidence that flow hydrogenation enhances reduction outcomes across a wide range of synthetic transformations. Moreover flow reactors enhance laboratory safety with pyrophoric catalysts contained in sealed cartridges and hydrogen generated in situ from water. This mini-review focuses on recent applications of flow chemistry to mediate nitro, imine, nitrile, amide, azide, and azo reductions. Methodologies to effect de-aromatisation, hydrodehalogenation, in addition to olefin, alkyne, carbonyl, and benzyl reductions are also examined. Further, protocols to effect chemoselective reductions and enantioselective reductions are highlighted. Together these applications demonstrate the numerous advantages of performing hydrogenation under flow conditions which include enhanced reaction throughput, yields, simplified workup, and the potential applicability to multistep and cascade synthetic protocols.


Asunto(s)
Química Orgánica/métodos , Catálisis , Hidrogenación , Compuestos Orgánicos/química , Estereoisomerismo
12.
bioRxiv ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38405965

RESUMEN

The Carbohydrate Response Element Binding Protein (ChREBP) is a glucose-responsive transcription factor (TF) that is characterized by two major splice isoforms (α and ß). In acute hyperglycemia, both ChREBP isoforms regulate adaptive ß-expansion; however, during chronic hyperglycemia and glucolipotoxicity, ChREBPß expression surges, leading to ß-cell dedifferentiation and death. 14-3-3 binding to ChREBPα results in its cytoplasmic retention and concomitant suppression of transcriptional activity, suggesting that small molecule-mediated stabilization of this protein-protein interaction (PPI) via molecular glues may represent an attractive entry for the treatment of metabolic disease. Here, we show that structure-based optimizations of a molecular glue tool compound led not only to more potent ChREBPα/14-3-3 PPI stabilizers but also for the first time cellular active compounds. In primary human ß-cells, the most active compound stabilized the ChREBPα/14-3-3 interaction and thus induced cytoplasmic retention of ChREBPα, resulting in highly efficient ß-cell protection from glucolipotoxicity while maintaining ß-cell identity. This study may thus not only provide the basis for the development of a unique class of compounds for the treatment of Type 2 Diabetes but also showcases an alternative 'molecular glue' approach for achieving small molecule control of notoriously difficult targetable TFs.

13.
Chem Sci ; 14(24): 6756-6762, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37350830

RESUMEN

Molecular glues are powerful tools for the control of protein-protein interactions. Yet, the mechanisms underlying multi-component protein complex formation remain poorly understood. Native mass spectrometry (MS) detects multiple protein species simultaneously, providing an entry to elucidate these mechanisms. Here, for the first time, covalent molecular glue stabilization was kinetically investigated by combining native MS with biophysical and structural techniques. This approach elucidated the stoichiometry of a multi-component protein-ligand complex, the assembly order, and the contributions of covalent versus non-covalent binding events that govern molecular glue activity. Aldehyde-based molecular glue activity is initially regulated by cooperative non-covalent binding, followed by slow covalent ligation, further enhancing stabilization. This study provides a framework to investigate the mechanisms of covalent small molecule ligation and informs (covalent) molecular glue development.

14.
Nat Commun ; 14(1): 7933, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040731

RESUMEN

Peptide-based covalent probes can target shallow protein surfaces not typically addressable using small molecules, yet there is a need for versatile approaches to convert native peptide sequences into covalent binders that can target a broad range of residues. Here we report protein-based thio-methacrylate esters-electrophiles that can be installed easily on unprotected peptides and proteins via cysteine side chains, and react efficiently and selectively with cysteine and lysine side chains on the target. Methacrylate phosphopeptides derived from 14-3-3-binding proteins irreversibly label 14-3-3σ via either lysine or cysteine residues, depending on the position of the electrophile. Methacrylate peptides targeting a conserved lysine residue exhibit pan-isoform binding of 14-3-3 proteins both in lysates and in extracellular media. Finally, we apply this approach to develop protein-based covalent binders. A methacrylate-modified variant of the colicin E9 immunity protein irreversibly binds to the E9 DNAse, resulting in significantly higher thermal stability relative to the non-covalent complex. Our approach offers a simple and versatile route to convert peptides and proteins into potent covalent binders.


Asunto(s)
Cisteína , Lisina , Lisina/metabolismo , Indicadores y Reactivos , Cisteína/química , Proteínas , Péptidos/química , Metacrilatos
15.
Eur J Med Chem ; 247: 115001, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36577213

RESUMEN

Wiskostatin (1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol) (1) is a carbazole-based compound reported as a specific and relatively potent inhibitor of the N-WASP actin remodelling complex (S-isomer EC50 = 4.35 µM; R-isomer EC50 = 3.44 µM). An NMR solution structure showed that wiskostatin interacts with a cleft in the regulatory GTPase binding domain of N-WASP. However, numerous studies have reported wiskostatin's actions on membrane transport and cytokinesis that are independent of the N-WASP-Arp2/3 complex pathway, but offer limited alternative explanation. The large GTPase, dynamin has established functional roles in these pathways. This study reveals that wiskostatin and its analogues, as well as other carbazole-based compounds, are inhibitors of helical dynamin GTPase activity and endocytosis. We characterise the effects of wiskostatin on in vitro dynamin GTPase activity, in-cell endocytosis, and determine the importance of wiskostatin functional groups on these activities through design and synthesis of libraries of wiskostatin analogues. We also examine whether other carbazole-based scaffolds frequently used in research or the clinic also modulate dynamin and endocytosis. Understanding off-targets for compounds used as research tools is important to be able to confidently interpret their action on biological systems, particularly when the target and off-targets affect overlapping mechanisms (e.g. cytokinesis and endocytosis). Herein we demonstrate that wiskostatin is a dynamin inhibitor (IC50 20.7 ± 1.2 µM) and a potent inhibitor of clathrin mediated endocytosis (IC50 = 6.9 ± 0.3 µM). Synthesis of wiskostatin analogues gave rise to 1-(9H-carbazol-9-yl)-3-((4-methylbenzyl)amino)propan-2-ol (35) and 1-(9H-carbazol-9-yl)-3-((4-chlorobenzyl)amino)propan-2-ol (43) as potent dynamin inhibitors (IC50 = 1.0 ± 0.2 µM), and (S)-1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol (8a) and (R)-1-(3,6-dibromo-9H-carbazol-9-yl)-3-(dimethylamino)propan-2-ol (8b) that are amongst the most potent inhibitors of clathrin mediated endocytosis yet reported (IC50 = 2.3 ± 3.3 and 2.1 ± 1.7 µM, respectively).


Asunto(s)
Dinamina I , Dinaminas , Dinamina I/química , Dinamina I/metabolismo , Dinaminas/farmacología , Carbazoles/farmacología , GTP Fosfohidrolasas , Actinas , Clatrina/metabolismo , Clatrina/farmacología , Endocitosis
16.
RSC Med Chem ; 14(11): 2246-2267, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37974967

RESUMEN

From lead 1, (N-(4-((4-(3-(4-(3-methoxyphenyl)-1H-1,2,3-triazol-1-yl)propyl)piperazin-1-yl)sulfonyl)-phenyl)acetamide), a S100A2-p53 protein-protein interaction inhibitor based on an in silico modelling driven hypothesis, four focused libraries were designed and synthesised. Growth inhibition screening was performed against 16 human cancer cell lines including the pancreatic cell lines MiaPaCa2, BxPC3, AsPC-1, Capan-2, HPAC, PANC-1 and the drug resistant CFPAC1. Modification of 1's phenylacetamide moiety, gave Library 1 with only modest pancreatic cancer activity. Modification of the 3-OCH3Ph moiety (Library 2) gave 4-CH3 (26), 4-CH2CH3 (27), 4-CF3 (31) and 4-NO2 (32) with sterically bulky groups more active. A 4-CF3 acetamide replacement enhanced cytotoxicity (Library 3). The 4-C(CH3)336 resulted in a predicted steric clash in the S100A2-p53 binding groove, with a potency decrease. Alkyl moieties afforded more potent analogues, 34 (4-CH3) and 35 (CH2CH3), a trend evident against pancreatic cancer: GI50 3.7 (35; BxPC-3) to 18 (40; AsPC-1) µM. Library 4 analogues with a 2-CF3 and 3-CF3 benzenesulfonamide moiety were less active than the corresponding Library 3 analogues. Two additional analogues were designed: 51 (4-CF3; 4-OCH3) and 52 (4-CF3; 2-OCH3) revealed 52 to be 10-20 fold more active than 51, against the pancreatic cancer cell lines examined with sub-micromolar GI50 values 0.43 (HPAC) to 0.61 µM (PANC-1). MOE calculated binding scores for each pose are also consistent with the observed biological activity with 52. The obtained SAR data is consistent with the proposed interaction within the S100A2-p53 bonding groove.

17.
Chem Sci ; 13(44): 13122-13131, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36425501

RESUMEN

Molecular glues represent an evolution in drug discovery, however, targeted stabilization of protein complexes remains challenging, owing to a paucity of drug design rules. The functional mapping of hotspots has been critical to protein-protein interaction (PPI) inhibitor research, however, the orthogonal approach to stabilize PPIs has not exploited this information. Utilizing the hub protein 14-3-3 as a case study we demonstrate that functional mapping of hotspots provides a triage map for 14-3-3 molecular glue development. Truncation and mutation studies allowed deconvoluting the energetic contributions of sidechain and backbone interactions of a 14-3-3-binding non-natural peptide. Three central 14-3-3 hotspots were identified and their thermodynamic characteristics profiled. In addition to the phospho-binding pocket; (i) Asn226, (ii) Lys122 and (iii) the hydrophobic patch formed by Leu218, Ile219 and Leu222 were critical for protein complex formation. Exploiting this hotspot information allowed a peptide-based molecular glue that elicits high cooperativity (α = 36) and selectively stabilizes the 14-3-3/ChREBP PPI to be uniquely developed.

18.
Chem Sci ; 12(32): 10836-10847, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34476063

RESUMEN

Electrophilic peptides that form an irreversible covalent bond with their target have great potential for binding targets that have been previously considered undruggable. However, the discovery of such peptides remains a challenge. Here, we present Rosetta CovPepDock, a computational pipeline for peptide docking that incorporates covalent binding between the peptide and a receptor cysteine. We applied CovPepDock retrospectively to a dataset of 115 disulfide-bound peptides and a dataset of 54 electrophilic peptides. It produced a top-five scoring, near-native model, in 89% and 100% of the cases when docking from the native conformation, and 20% and 90% when docking from an extended peptide conformation, respectively. In addition, we developed a protocol for designing electrophilic peptide binders based on known non-covalent binders or protein-protein interfaces. We identified 7154 peptide candidates in the PDB for application of this protocol. As a proof-of-concept we validated the protocol on the non-covalent complex of 14-3-3σ and YAP1 phosphopeptide. The protocol identified seven highly potent and selective irreversible peptide binders. The predicted binding mode of one of the peptides was validated using X-ray crystallography. This case-study demonstrates the utility and impact of CovPepDock. It suggests that many new electrophilic peptide binders can be rapidly discovered, with significant potential as therapeutic molecules and chemical probes.

19.
J Med Chem ; 64(12): 8423-8436, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34076416

RESUMEN

Protein-protein modulation has emerged as a proven approach to drug discovery. While significant progress has been gained in developing protein-protein interaction (PPI) inhibitors, the orthogonal approach of PPI stabilization lacks established methodologies for drug design. Here, we report the systematic ″bottom-up″ development of a reversible covalent PPI stabilizer. An imine bond was employed to anchor the stabilizer at the interface of the 14-3-3/p65 complex, leading to a molecular glue that elicited an 81-fold increase in complex stabilization. Utilizing protein crystallography and biophysical assays, we deconvoluted how chemical properties of a stabilizer translate to structural changes in the ternary 14-3-3/p65/molecular glue complex. Furthermore, we explore how this leads to high cooperativity and increased stability of the complex.


Asunto(s)
Proteínas 14-3-3/metabolismo , Benzaldehídos/química , Proteínas de Escherichia coli/metabolismo , Unión Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Factor de Transcripción ReIA/metabolismo , Diseño de Fármacos , Escherichia coli , Estructura Molecular , Relación Estructura-Actividad
20.
ChemMedChem ; 16(18): 2851-2863, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34047071

RESUMEN

In silico approaches identified 1, N-(6-((4-bromo- benzyl)amino)hexyl)-3,5-bis(trifluoromethyl)benzene sulfonamide, as a potential inhibitor of the S100A2-p53 protein-protein interaction, a validated pancreatic cancer drug target. Subsequent cytotoxicity screening revealed it to be a 2.97 µM cell growth inhibitor of the MiaPaCa-2 pancreatic cell line. This is in keeping with our hypothesis that inhibiting this interaction would have an anti-pancreatic cancer effect with S100A2, the validated PC drug target. A combination of focused library synthesis (three libraries, 24 compounds total) and cytotoxicity screening identified a propyl alkyl diamine spacer as optimal; the nature of the terminal phenyl substituent had limited impact on observed cytotoxicity, whereas N-methylation was detrimental to activity. In total 15 human cancer cell lines were examined, with most analogues showing broad-spectrum activity. Near uniform activity was observed against a panel of six pancreatic cancer cell lines: MiaPaCa-2, BxPC-3, AsPC-1, Capan-2, HPAC and PANC-1. In all cases there was good to excellent correlation between the predicted docking pose in the S100A2-p53 binding groove and the observed cytotoxicity, especially in the pancreatic cancer cell line with high endogenous S100A2 expression. This supports S100A2 as a pancreatic cancer drug target.


Asunto(s)
Antineoplásicos/farmacología , Factores Quimiotácticos/antagonistas & inhibidores , Proteínas S100/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Factores Quimiotácticos/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Proteínas S100/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA