Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sensors (Basel) ; 23(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36904908

RESUMEN

Power system stability is a task that every system operator (SO) is required to achieve daily to ensure an uninterruptible power supply. Especially at the transmission level, for each SO it is of utmost importance to ensure proper exchange of information with other SOs, mainly in case of contingencies. However, in the last years, two major events led to the splitting of Continental Europe into two synchronous areas. These events were caused by anomalous conditions which involved in one case the fault of a transmission line and in the other a fire outage in proximity to high-voltage lines. This work analyzes these two events from the measurement point of view. In particular, we discuss the possible impact of estimation uncertainty on control decisions based on measurements of instantaneous frequency. For this purpose, we simulate five different configurations of phasor measurement units (PMUs), as characterized by different signal models, processing routines, and estimation accuracy in the presence of off-nominal or dynamic conditions. The objective is to establish the accuracy of the frequency estimates in transient conditions, more specifically during the resynchronization of the Continental Europe area. Based on this knowledge, it is possible to set more suitable conditions for resynchronization operations: the idea is to consider not only the frequency deviation between the two areas but also to take into account the respective measurement uncertainty. As confirmed by the analysis of the two real-world scenarios, such an approach would allow for minimizing the probability of adverse or even dangerous conditions such as dampened oscillations and inter-modulations.

2.
Sensors (Basel) ; 22(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35009937

RESUMEN

Power quality evaluation is the process of assessing the actual power network parameters with respect to the ideal conditions. However, several new assets and devices among the grid include mining the voltage and current quality. For example, the power converters needed for renewable energy sources' connection to the grid, electric vehicles, etc., are some of the main sources of disturbances that inject high-frequency components into the grid. Consequently, instrument transformers (ITs) should be capable of measuring distorted currents and voltages with the same level of accuracy guaranteed for the ideal frequency (50-60 Hz). This is not a simple task if one considers that several other influence quantities endlessly act on the ITs. To this purpose, considering the lack of a standard, this work presents a measurement setup and specific tests for testing a commonly used type of low-power current transformer, the Rogowski coil (RC). In particular, the accuracy performance (ratio error and phase displacement) of the RCs was evaluated when measuring distorted signals while other influence quantities affected the RCs. Such quantities included positioning, burden, and magnetic field. The results indicate which quantities (or combination of them) have the greatest effect on the RC's accuracy performance.

3.
Sensors (Basel) ; 22(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35214299

RESUMEN

Low-Power Instrument Transformers (LPITs) are becoming the first choice for distributed measurement systems for medium voltage networks. However, there are still a lot of challenges related to their operation. Such challenges include their accuracy variation when several influence quantities are acting on them. Among the most significant influence quantities are temperature, electromagnetic field, humidity, etc. Another aspect that increases the importance of studying the LPITs' accuracy behavior is that, once installed, they cannot be calibrated for several years; hence, one cannot compensate for in-field conditions. Hence, this work aims at introducing a simple type test for a specific LPIT, the Rogowski coil. First, an experimental setup to assess the effect of temperature, humidity, and positioning on the power quality accuracy performance of the Rogowski coil is described. Second, from the results and the experience of the authors it has been possible to design a specific type test. The test has the aim of finding the limits of the accuracy variations of a single Rogowski coil. Afterwards, such limits can be used to compensate for the in-field measurements, obtaining an overall higher accuracy. The results of this work may contribute to the always-evolving standardization work on LPITs.

4.
Sensors (Basel) ; 21(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801355

RESUMEN

The use of capacitive dividers (CDs) in medium-voltage (MV) networks started as simple voltage detectors and as rough voltage measurement instruments for protective purposes. Now, with the spread of intelligent electronic devices and renewable energy sources at the distribution level, capacitive dividers are designed and installed to perform accurate voltage measurements. Such a requirement is mandatory when the power quality has to be assessed. Therefore, CDs are currently being used either for power frequency or for high-frequency (supraharmonic- or partial-discharge-level) measurements. In this paper, typical off-the-shelf CDs are studied and modeled to understand how they behave in a wide range of frequencies and when the temperature varies. To this purpose, specific setups and tests have been developed and performed. From the results, it is clear that with proper modeling of CDs, it is possible to exploit them for measuring phenomena in a wide range of frequencies, including the effects due to temperature variations and self-resonances.

5.
Sensors (Basel) ; 21(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34577340

RESUMEN

In recent years, the introduction of real-time simulators (RTS) has changed the way of researching the power network. In particular, researchers and system operators (SOs) are now capable of simulating the complete network and of making it interact with the real world thanks to the hardware-in-the-loop (HIL) and digital twin (DT) concepts. Such tools create infinite scenarios in which the network can be tested and virtually monitored to, for example, predict and avoid faults or energy shortages. Furthermore, the real-time monitoring of the network allows estimating the status of the electrical assets and consequently undertake their predictive maintenance. The success of the HIL and DT application relies on the fact that the simulated network elements (cables, generation, accessories, converters, etc.) are correctly modeled and characterized. This is particularly true if the RTS acquisition capabilities are used to enable the HIL and the DT. To this purpose, this work aims at emphasizing the role of a preliminary characterization of the virtual elements inside the RTS system, experimentally verifying how the overall performance is significantly affected by them. To this purpose, a virtual phasor measurement unit (PMU) is tested and characterized to understand its uncertainty contribution. To achieve that, firstly, the characterization of a virtual PMU calibrator is described. Afterward, the virtual PMU calibration is performed, and the results clearly highlight its key role in the overall uncertainty. It is then possible to conclude that the characterization of the virtual elements, or models, inside RTS systems (omitted most of the time) is fundamental to avoid wrong results. The same concepts can be extended to all those fields that exploit HIL and DT capabilities.


Asunto(s)
Calibración
6.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668361

RESUMEN

Multiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of bone marrow (BM) clonal plasma cells, which are strictly dependent on the microenvironment. Despite the improvement of MM survival with the use of new drugs, MM patients still relapse and become always refractory to the treatment. The development of new therapeutic strategies targeting both tumor and microenvironment cells are necessary. Oncolytic virotherapy represent a promising approach in cancer treatment due to tumor-specific oncolysis and activation of the immune system. Different types of human viruses were checked in preclinical MM models, and the use of several viruses are currently investigated in clinical trials in MM patients. More recently, the use of alternative non-human viruses has been also highlighted in preclinical studies. This strategy could avoid the antiviral immune response of the patients against human viruses due to vaccination or natural infections, which could invalid the efficiency of virotherapy approach. In this review, we explored the effects of the main oncolytic viruses, which act through both direct and indirect mechanisms targeting myeloma and microenvironment cells inducing an anti-MM response. The efficacy of the oncolytic virus-therapy in combination with other anti-MM drugs targeting the microenvironment has been also discussed.


Asunto(s)
Mieloma Múltiple/terapia , Viroterapia Oncolítica/métodos , Microambiente Tumoral , Animales , Humanos
7.
Neurobiol Dis ; 140: 104849, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32222473

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia. At the pre-symptomatic phase of the disease, the processing of the amyloid precursor protein (APP) produces toxic peptides, called amyloid-ß 1-42 (Aß 1-42). The downstream effects of Aß 1-42 production are not completely uncovered. Here, we report the involvement of transglutaminase 1 (TG1) in in vitro AD models of neuronal toxicity. TG1 was increased at late stages of the disease in the hippocampus of a mouse model of AD and in primary cortical neurons undergoing stress. Silencing of TGM1 gene was sufficient to prevent Aß-mediated neuronal death. Conversely, its overexpression enhanced cell death. TGM1 upregulation was mediated at the transcriptional level by an activator protein 1 (AP1) binding site that when mutated halted TGM1 promoter activation. These results indicate that TG1 acts downstream of Aß-toxicity, and that its stress-dependent increase makes it suitable for pharmacological intervention.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Muerte Celular/fisiología , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Transglutaminasas/metabolismo , Precursor de Proteína beta-Amiloide , Animales , Modelos Animales de Enfermedad , Hipocampo , Ratones
8.
Br J Haematol ; 190(3): 430-436, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32162328

RESUMEN

A deep elucidation of the mechanisms of action of anti-CD38 monoclonal antibodies (mAbs), such as daratumumab (DARA), is required to identify patients with multiple myeloma (MM) who are more responsive to this treatment. In the present study, an autologous ex vivo approach was established, focussing on the role of the monocytes in the anti CD38-mediated killing of MM cells. In bone marrow (BM) samples from 29 patients with MM, we found that the ratio between monocytes (CD14+ ) and MM cells (CD138+ ) influences the response to DARA. Further, the exposure of the BM samples to DARA is followed by the formation of a CD138+ CD14+ double-positive (DP) population, that quantitatively correlates with the anti-MM cells killing. These effects were dependent on the presence of a CD14+ CD16+ monocyte subset and on high CD16 expression levels. Lastly, the addition of a mAb neutralising the CD47/signal-regulatory protein α (SIRPα) axis was able to increase the killing mediated by DARA. The effects were observed only in coincidence with high CD14+ :CD138+ ratio, with a significant presence of the DP population and were correlated with CD16 expression. In conclusion, the present study underlines the critical role of the CD16+ monocytes in DARA anti-MM killing effects and gives a rationale to test the combination of an anti-CD47 mAb with anti-CD38 mAbs.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígeno CD47/antagonistas & inhibidores , Terapia Molecular Dirigida , Monocitos/inmunología , Mieloma Múltiple/patología , Anticuerpos Neutralizantes/farmacología , Antígenos de Diferenciación/inmunología , Médula Ósea , Citotoxicidad Inmunológica , Proteínas Ligadas a GPI/análisis , Humanos , Receptores de Lipopolisacáridos/análisis , Monocitos/química , Monocitos/clasificación , Monocitos/efectos de los fármacos , Receptores de IgG/análisis , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/inmunología , Sindecano-1/análisis
9.
Blood ; 128(5): 667-79, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27268090

RESUMEN

The importance of glutamine (Gln) metabolism in multiple myeloma (MM) cells and its potential role as a therapeutic target are still unknown, although it has been reported that human myeloma cell lines (HMCLs) are highly sensitive to Gln depletion. In this study, we found that both HMCLs and primary bone marrow (BM) CD138(+) cells produced large amounts of ammonium in the presence of Gln. MM patients have lower BM plasma Gln with higher ammonium and glutamate than patients with indolent monoclonal gammopathies. Interestingly, HMCLs expressed glutaminase (GLS1) and were sensitive to its inhibition, whereas they exhibited negligible expression of glutamine synthetase (GS). High GLS1 and low GS expression were also observed in primary CD138(+) cells. Gln-free incubation or treatment with the glutaminolytic enzyme l-asparaginase depleted the cell contents of Gln, glutamate, and the anaplerotic substrate 2-oxoglutarate, inhibiting MM cell growth. Consistent with the dependence of MM cells on extracellular Gln, a gene expression profile analysis, on both proprietary and published datasets, showed an increased expression of the Gln transporters SNAT1, ASCT2, and LAT1 by CD138(+) cells across the progression of monoclonal gammopathies. Among these transporters, only ASCT2 inhibition in HMCLs caused a marked decrease in Gln uptake and a significant fall in cell growth. Consistently, stable ASCT2 downregulation by a lentiviral approach inhibited HMCL growth in vitro and in a murine model. In conclusion, MM cells strictly depend on extracellular Gln and show features of Gln addiction. Therefore, the inhibition of Gln uptake is a new attractive therapeutic strategy for MM.


Asunto(s)
Glutamina/metabolismo , Terapia Molecular Dirigida , Mieloma Múltiple/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Sistema de Transporte de Aminoácidos ASC/metabolismo , Compuestos de Amonio/metabolismo , Animales , Asparaginasa/metabolismo , Transporte Biológico , Línea Celular Tumoral , Proliferación Celular , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Glutamato-Amoníaco Ligasa/metabolismo , Glutaminasa/metabolismo , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Antígenos de Histocompatibilidad Menor/metabolismo , Gammopatía Monoclonal de Relevancia Indeterminada/patología , Mieloma Múltiple/enzimología , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Sindecano-1/metabolismo
10.
Calcif Tissue Int ; 102(2): 210-226, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29080972

RESUMEN

Bone disease is the hallmark of multiple myeloma (MM), a hematological malignancy characterized by osteolytic lesions due to a severe uncoupled and unbalanced bone remodeling with pronounced osteoblast suppression. Bone metastasis is also a frequent complication of solid tumors including advanced breast or prostate cancer. In the past years, the ubiquitin-proteasome pathway has been proved critical in regulating the balance between bone formation and bone resorption. Proteasome inhibitors (PIs) are a new class of drugs, currently used in the treatment of MM, that affect both tumor cells and bone microenvironment. Particularly, PIs stimulate osteoblast differentiation by human mesenchymal stromal cells and increase bone regeneration in mice. Interestingly, in vitro data indicate that PIs block MM-induced osteoblast and osteocyte cell death by targeting both apoptosis and autophagy. The preclinical data are supported by the following effects observed in MM patients treated with PIs: increase of bone alkaline phosphatase levels, normalization of the markers of bone turnover, and reduction of the skeletal-related events. Moreover, the histomorphometric data indicate that the treatment with bortezomib stimulates osteoblast formation and maintains osteocyte viability in MM patients. This review updates the evidence on the effects of PIs on bone remodeling and on cancer-induced bone disease while focusing on MM bone disease.


Asunto(s)
Enfermedades Óseas/etiología , Mieloma Múltiple/complicaciones , Complejo de la Endopetidasa Proteasomal/fisiología , Ubiquitina/fisiología , Enfermedades Óseas/enzimología , Enfermedades Óseas/fisiopatología , Remodelación Ósea/efectos de los fármacos , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/enzimología , Mieloma Múltiple/fisiopatología , Osteoblastos/efectos de los fármacos , Osteoblastos/fisiología , Osteoclastos/efectos de los fármacos , Osteoclastos/fisiología , Osteocitos/efectos de los fármacos , Osteocitos/fisiología , Inhibidores de Proteasoma/uso terapéutico
11.
Haematologica ; 102(4): 773-784, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28057743

RESUMEN

Bone marrow monocytes are primarily committed to osteoclast formation. It is, however, unknown whether potential primary alterations are specifically present in bone marrow monocytes from patients with multiple myeloma, smoldering myeloma or monoclonal gammopathy of undetermined significance. We analyzed the immunophenotypic and transcriptional profiles of bone marrow CD14+ monocytes in a cohort of patients with different types of monoclonal gammopathies to identify alterations involved in myeloma-enhanced osteoclastogenesis. The number of bone marrow CD14+CD16+ cells was higher in patients with active myeloma than in those with smoldering myeloma or monoclonal gammopathy of undetermined significance. Interestingly, sorted bone marrow CD14+CD16+ cells from myeloma patients were more pro-osteoclastogenic than CD14+CD16-cells in cultures ex vivo Moreover, transcriptional analysis demonstrated that bone marrow CD14+ cells from patients with multiple myeloma (but neither monoclonal gammopathy of undetermined significance nor smoldering myeloma) significantly upregulated genes involved in osteoclast formation, including IL21RIL21R mRNA over-expression by bone marrow CD14+ cells was independent of the presence of interleukin-21. Consistently, interleukin-21 production by T cells as well as levels of interleukin-21 in the bone marrow were not significantly different among monoclonal gammopathies. Thereafter, we showed that IL21R over-expression in CD14+ cells increased osteoclast formation. Consistently, interleukin-21 receptor signaling inhibition by Janex 1 suppressed osteoclast differentiation from bone marrow CD14+ cells of myeloma patients. Our results indicate that bone marrow monocytes from multiple myeloma patients show distinct features compared to those from patients with indolent monoclonal gammopathies, supporting the role of IL21R over-expression by bone marrow CD14+ cells in enhanced osteoclast formation.


Asunto(s)
Expresión Génica , Monocitos/metabolismo , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Osteoclastos/metabolismo , Receptores de Interleucina-21/genética , Biomarcadores , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Análisis por Conglomerados , Citocinas/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Receptores de Lipopolisacáridos/metabolismo , Masculino , Gammopatía Monoclonal de Relevancia Indeterminada/genética , Gammopatía Monoclonal de Relevancia Indeterminada/metabolismo , Gammopatía Monoclonal de Relevancia Indeterminada/patología , Mieloma Múltiple/metabolismo , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de IgG/metabolismo , Receptores de Interleucina-21/metabolismo
12.
Mol Med ; 22: 694-704, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27761584

RESUMEN

Human myeloma cells express CD38 at high levels and grow in hypoxic niches inside the bone marrow. Myeloma cells respond to hypoxia with metabolic changes leading to aerobic glycolysis, thus reducing ATP and increasing NAD+. Our hypothesis is that these conditions favor the enzymatic pathways involved in the production of adenosine in the niche. Within the niche, NAD+ is able to activate a discontinuous adenosinergic pathway that relies upon CD38, CD203a, and CD73 or TRACP, according to the environmental pH. The observed variability in adenosine concentrations in bone marrow aspirates is a result of the interactions taking place among myeloma and other cells in the bone marrow niche. A pilot study showed that adenosine profiles differ during disease progression. Adenosine levels were significantly higher in the bone marrow plasma of patients with symptomatic myeloma and correlated with ISS staging, suggesting that adenosine is produced in the myeloma niche at micromolar levels by an ectoenzymatic network centered on CD38. Adenosine levels increase with disease aggressiveness, a finding that supports adenosine as a potential marker of myeloma progression.

15.
Biomedicines ; 11(4)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37189745

RESUMEN

Monogenic autoimmune disorders represent an important tool to understand the mechanisms behind central and peripheral immune tolerance. Multiple factors, both genetic and environmental, are known to be involved in the alteration of the immune activation/immune tolerance homeostasis typical of these disorders, making it difficult to control the disease. The latest advances in genetic analysis have contributed to a better and more rapid diagnosis, although the management remains confined to the treatment of clinical manifestations, as there are limited studies on rare diseases. Recently, the correlation between microbiota composition and the onset of autoimmune disorders has been investigated, thus opening up new perspectives on the cure of monogenic autoimmune diseases. In this review, we will summarize the main genetic features of both organ-specific and systemic monogenic autoimmune diseases, reporting on the available literature data on microbiota alterations in these patients.

16.
Oncoimmunology ; 11(1): 2120275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105747

RESUMEN

The humoral and cellular response to SARS-CoV-2 mRNA full vaccination and booster dose as well as the impact of the spike variants, including Omicron, are still unclear in patients with multiple myeloma (MM) and those with pre-malignant monoclonal gammopathies. In this study, involving 40 patients, we found that MM patients with relapsed-refractory disease (MMR) had reduced spike-specific antibody levels and neutralizing titers after SARS-CoV-2 vaccination. The five analyzed variants, remarkably Omicron, had a significant negative impact on the neutralizing ability of the vaccine-induced antibodies in all patients with MM and smoldering MM. Moreover, lower spike-specific IL-2-producing CD4+ T cells and reduced cytotoxic spike-specific IFN-γ and TNF-α-producing CD8+ T cells were found in MM patients as compared to patients with monoclonal gammopathy of undetermined significance. We found that a heterologous booster immunization improved SARS-CoV-2 spike humoral and cellular responses in newly diagnosed MM (MMD) patients and in most, but not all, MMR patients. After the booster dose, a significant increase of the neutralizing antibody titers against almost all the analyzed variants was achieved in MMD. However, in MMR patients, Omicron retained a negative impact on neutralizing ability, suggesting further approaches to potentiating the effectiveness of SARS-CoV-2 vaccination in these patients.


Asunto(s)
COVID-19 , Mieloma Múltiple , Vacunas Virales , Anticuerpos Antivirales , Linfocitos T CD8-positivos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad , ARN Mensajero , SARS-CoV-2 , Vacunación , Vacunas Virales/genética
17.
Cancers (Basel) ; 13(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418913

RESUMEN

The emerging role of the PD-1/PD-L1 axis in MM immune-microenvironment has been highlighted by several studies. However, discordant data have been reported on PD-1/PD-L1 distribution within the bone marrow (BM) microenvironment of patients with monoclonal gammopathies. In addition, the efficacy of PD-1/PD-L1 blockade as a therapeutic strategy to reverse myeloma immune suppression and inhibit myeloma cell survival still remains unknown. Recent data suggest that, among the potential mechanisms behind the lack of responsiveness or resistance to anti-PD-L1/PD-1 antibodies, the CD38 metabolic pathways involving the immune-suppressive factor, adenosine, could play an important role. This review summarizes the available data on PD-1/PD-L1 expression in patients with MM, reporting the main mechanisms of regulation of PD-1/PD-L1 axis. The possible link between the CD38 and PD-1/PD-L1 pathways is also reported, highlighting the rationale for the potential use of a combined therapeutic approach with CD38 blocking agents and anti-PD-1/PD-L1 antibodies in order to improve their anti-tumoral effect in MM patients.

18.
Vaccines (Basel) ; 9(4)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33920999

RESUMEN

COVID-19 is an ongoing pandemic caused by the highly infectious coronavirus SARS-CoV-2 that is engaging worldwide scientific research to find a timely and effective eradication strategy. Great efforts have been put into anti-COVID-19 vaccine generation in an effort to protect the world population and block SARS-CoV-2 spread. To validate the protective efficacy of the vaccination campaign and effectively control the pandemic, it is necessary to quantify the induction of neutralizing antibodies by vaccination, as they have been established to be a correlate of protection. In this work, a SARS-CoV-2 pseudovirus neutralization assay, based on a replication-incompetent lentivirus expressing an adapted form of CoV-2 S protein and an ACE2/TMPRSS2 stably expressing cell line, has been minimized in terms of protocol steps without loss of accuracy. The goal of the present simplified neutralization system is to improve SARS-CoV-2 vaccination campaign by means of an easy and accessible approach to be performed in any medical laboratory, maintaining the sensitivity and quantitative reliability of classical serum neutralization assays. Further, this assay can be easily adapted to different coronavirus variants by simply modifying the pseudotyping vector.

19.
J Clin Med ; 9(9)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899714

RESUMEN

The monoclonal antibodies (mAbs) have significantly changed the treatment of multiple myeloma (MM) patients. However, despite their introduction, MM remains an incurable disease. The mAbs currently used for MM treatment were developed with different mechanisms of action able to target antigens, such as cluster of differentiation 38 (CD38) and SLAM family member 7 (SLAMF7) expressed by both, MM cells and the immune microenvironment cells. In this review, we focused on the mechanisms of action of the main mAbs approved for the therapy of MM, and on the possible novel approaches to improve MM cell killing by mAbs. Actually, the combination of anti-CD38 or anti-SLAMF7 mAbs with the immunomodulatory drugs significantly improved the clinical effect in MM patients. On the other hand, pre-clinical evidence indicates that different approaches may increase the efficacy of mAbs. The use of trans-retinoic acid, the cyclophosphamide or the combination of anti-CD47 and anti-CD137 mAbs have given the rationale to design these types of combinations therapies in MM patients in the future. In conclusion, a better understanding of the mechanism of action of the mAbs will allow us to develop novel therapeutic approaches to improve their response rate and to overcome their resistance in MM patients.

20.
J Hematol Oncol ; 13(1): 89, 2020 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-32653014

RESUMEN

BACKGROUND: The oncolytic viruses have shown promising results for the treatment of multiple myeloma. However, the use of human viruses is limited by the patients' antiviral immune response. In this study, we investigated an alternative oncolytic strategy using non-human pathogen viruses as the bovine viral diarrhea virus (BVDV) that were able to interact with CD46. METHODS: We treated several human myeloma cell lines and non-myeloma cell lines with BVDV to evaluate the expression of CD46 and to study the effect on cell viability by flow cytometry. The possible synergistic effect of bortezomib in combination with BVDV was also tested. Moreover, we infected the bone marrow mononuclear cells obtained from myeloma patients and we checked the BVDV effect on different cell populations, defined by CD138, CD14, CD3, CD19, and CD56 expression evaluated by flow cytometry. Finally, the in vivo BVDV effect was tested in NOD-SCID mice injected subcutaneously with myeloma cell lines. RESULTS: Human myeloma cells were selectively sensitive to BVDV treatment with an increase of cell death and, consequently, of apoptotic markers. Consistently, bone marrow mononuclear cells isolated from myeloma patients treated with BVDV, showed a significant selective decrease of the percentage of viable CD138+ cells. Interestingly, bortezomib pre-treatment significantly increased the cytotoxic effect of BVDV in myeloma cell lines with a synergistic effect. Finally, the in vitro data were confirmed in an in vivo myeloma mouse model showing that BVDV treatment significantly reduced the tumoral burden compared to the vehicle. CONCLUSIONS: Overall, our data indicate, for the first time, a direct oncolytic effect of the BVDV in human myeloma cells suggesting its possible use as novel alternative anti-myeloma virotherapy strategy.


Asunto(s)
Virus de la Diarrea Viral Bovina , Mieloma Múltiple/terapia , Viroterapia Oncolítica , Virus Oncolíticos , Anciano , Anciano de 80 o más Años , Animales , Antígenos CD/análisis , Apoptosis , Células de la Médula Ósea/química , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/virología , Bortezomib/farmacología , Línea Celular Tumoral , Efecto Citopatogénico Viral , Virus de la Diarrea Viral Bovina/fisiología , Femenino , Herpesvirus Bovino 4 , Humanos , Masculino , Proteína Cofactora de Membrana/biosíntesis , Proteína Cofactora de Membrana/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Mieloma Múltiple/patología , Virus Oncolíticos/fisiología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Organismos Libres de Patógenos Específicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA