Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 91(5): 1834-1862, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38247051

RESUMEN

This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting.


Asunto(s)
Encéfalo , Procesamiento de Imagen Asistido por Computador , Consenso , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Cabeza , Imagen por Resonancia Magnética/métodos , Algoritmos , Mapeo Encefálico/métodos
2.
Hum Brain Mapp ; 44(13): 4792-4811, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37461286

RESUMEN

Soma and neurite density image (SANDI) is an advanced diffusion magnetic resonance imaging biophysical signal model devised to probe in vivo microstructural information in the gray matter (GM). This model requires acquisitions that include b values that are at least six times higher than those used in clinical practice. Such high b values are required to disentangle the signal contribution of water diffusing in soma from that diffusing in neurites and extracellular space, while keeping the diffusion time as short as possible to minimize potential bias due to water exchange. These requirements have limited the use of SANDI only to preclinical or cutting-edge human scanners. Here, we investigate the potential impact of neglecting water exchange in the SANDI model and present a 10-min acquisition protocol that enables to characterize both GM and white matter (WM) on 3 T scanners. We implemented analytical simulations to (i) evaluate the stability of the fitting of SANDI parameters when diminishing the number of shells; (ii) estimate the bias due to potential exchange between neurites and extracellular space in such reduced acquisition scheme, comparing it with the bias due to experimental noise. Then, we demonstrated the feasibility and assessed the repeatability and reproducibility of our approach by computing microstructural metrics of SANDI with AMICO toolbox and other state-of-the-art models on five healthy subjects. Finally, we applied our protocol to five multiple sclerosis patients. Results suggest that SANDI is a practical method to characterize WM and GM tissues in vivo on performant clinical scanners.


Asunto(s)
Neuritas , Sustancia Blanca , Humanos , Reproducibilidad de los Resultados , Benchmarking , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Agua
3.
Neuroimage ; 260: 119454, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35810938

RESUMEN

Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is a prodromal stage of α-synucleinopathies, such as Parkinson's disease (PD), which are characterized by the loss of dopaminergic neurons in substantia nigra, associated with abnormal iron load. The assessment of presymptomatic biomarkers predicting the onset of neurodegenerative disorders is critical for monitoring early signs, screening patients for neuroprotective clinical trials and understanding the causal relationship between iron accumulation processes and disease development. Here, we used Quantitative Susceptibility Mapping (QSM) and 7T MRI to quantify iron deposition in Nigrosome 1 (N1) in early PD (ePD) patients, iRBD patients and healthy controls and investigated group differences and correlation with disease progression. We evaluated the radiological appearance of N1 and analyzed its iron content in 35 ePD, 30 iRBD patients and 14 healthy controls via T2*-weighted sequences and susceptibility (χ) maps. N1 regions of interest (ROIs) were manually drawn on control subjects and warped onto a study-specific template to obtain probabilistic N1 ROIs. For each subject the N1 with the highest mean χ was considered for statistical analysis. The appearance of N1 was rated pathological in 45% of iRBD patients. ePD patients showed increased N1 χ compared to iRBD patients and HC but no correlation with disease duration, indicating that iron load remains stable during the early stages of disease progression. Although no difference was reported in iron content between iRBD and HC, N1 χ in the iRBD group increases as the disease evolves. QSM can reveal temporal changes in N1 iron content and its quantification may represent a valuable presymptomatic biomarker to assess neurodegeneration in the prodromal stages of PD.


Asunto(s)
Sobrecarga de Hierro , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Sinucleinopatías , Biomarcadores , Progresión de la Enfermedad , Humanos , Hierro , Sobrecarga de Hierro/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Síntomas Prodrómicos , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen , Trastorno de la Conducta del Sueño REM/patología
4.
Eur J Neurol ; 29(10): 2944-2955, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35700041

RESUMEN

BACKGROUND AND PURPOSE: In the quest for in vivo diagnostic biomarkers to discriminate Parkinson's disease (PD) from progressive supranuclear palsy (PSP) and multiple system atrophy (MSA, mainly p phenotype), many advanced magnetic resonance imaging (MRI) techniques have been studied. Morphometric indices, such as the Magnetic Resonance Parkinsonism Index (MRPI), demonstrated high diagnostic value in the comparison between PD and PSP. The potential of quantitative susceptibility mapping (QSM) was hypothesized, as increased magnetic susceptibility (Δχ) was reported in the red nucleus (RN) and medial part of the substantia nigra (SNImed) of PSP patients and in the putamen of MSA patients. However, disease-specific susceptibility values for relevant regions of interest are yet to be identified. The aims of the study were to evaluate the diagnostic potential of a multimodal MRI protocol combining morphometric and QSM imaging in patients with determined parkinsonisms and to explore its value in a population of undetermined cases. METHOD: Patients with suspected degenerative parkinsonism underwent clinical evaluation, 3 T brain MRI and clinical follow-up. The MRPI was manually calculated on T1-weighted images. QSM maps were generated from 3D multi-echo T2*-weighted sequences. RESULTS: In determined cases the morphometric evaluation confirmed optimal diagnostic accuracy in the comparison between PD and PSP but failed to discriminate PD from MSA-p. Significant nigral and extranigral differences were found with QSM. RN Δχ showed excellent diagnostic accuracy in the comparison between PD and PSP and good accuracy in the comparison of PD and MSA-p. Optimal susceptibility cut-off values of RN and SNImed were tested in undetermined cases in addition to MRPI. CONCLUSIONS: A combined use of morphometric imaging and QSM could improve the diagnostic phase of degenerative parkinsonisms.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Diagnóstico Diferencial , Humanos , Imagen por Resonancia Magnética/métodos , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/patología , Enfermedad de Parkinson/diagnóstico , Trastornos Parkinsonianos/diagnóstico , Parálisis Supranuclear Progresiva/diagnóstico
5.
Neuroimage ; 244: 118574, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34508897

RESUMEN

Functional Quantitative Susceptibility Mapping (fQSM) allows for the quantitative measurement of time-varying magnetic susceptibility across cortical and subcortical brain structures with a potentially higher spatial specificity than conventional fMRI. While the usefulness of fQSM with General Linear Model and "On/Off" paradigms has been assessed, little is known about the potential applications and limitations of this technique in more sophisticated experimental paradigms and analyses, such as those currently used in modern neuroimaging. To thoroughly characterize fQSM activations, here we used 7T MRI, tonotopic mapping, as well as univariate (i.e., GLM and population Receptive Field) and multivariate (Representational Similarity Analysis; RSA) analyses. Although fQSM detected less tone-responsive voxels than fMRI, they were more consistently localized in gray matter. Also, the majority of active gray matter voxels exhibited negative fQSM response, signaling the expected oxyhemoglobin increase, whereas positive fQSM activations were mainly in white matter. Though fMRI- and fQSM-based tonotopic maps were overall comparable, the representation of frequency tunings in tone-sensitive regions was significantly more balanced for fQSM. Lastly, RSA revealed that frequency information from the auditory cortex could be successfully retrieved by using either methods. Overall, fQSM produces complementary results to conventional fMRI, as it captures small-scale variations in the activation pattern which inform multivariate measures. Although positive fQSM responses deserve further investigation, they do not impair the interpretation of contrasts of interest. The quantitative nature of fQSM, its spatial specificity and the possibility to simultaneously acquire canonical fMRI support the use of this technique for longitudinal and multicentric studies and pre-surgical mapping.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Adulto , Corteza Auditiva/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Medios de Contraste , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Modelos Lineales , Masculino , Sustancia Blanca/diagnóstico por imagen
6.
Magn Reson Med ; 84(5): 2606-2615, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32368835

RESUMEN

PURPOSE: To obtain three-dimensional (3D), quantitative and motion-robust imaging with magnetic resonance fingerprinting (MRF). METHODS: Our acquisition is based on a 3D spiral projection k-space scheme. We compared different orderings of trajectory interleaves in terms of rigid motion-correction robustness. In all tested orderings, we considered the whole dataset as a sum of 56 segments of 7-s duration, acquired sequentially with the same flip angle schedule. We performed a separate image reconstruction for each segment, producing whole-brain navigators that were aligned to the first segment using normalized correlation. The estimated rigid motion was used to correct the k-space data, and the aligned data were matched with the dictionary to obtain motion-corrected maps. RESULTS: A significant improvement on the motion-affected maps after motion correction is evident with the suppression of motion artifacts. Correlation with the motionless baseline improved by 20% on average for both T1 and T2 estimations after motion correction. In addition, the average motion-induced quantification bias of 70 ms for T1 and 18 ms for T2 values was reduced to 12 ms and 6 ms, respectively, improving the reliability of quantitative estimations. CONCLUSION: We established a method that allows correcting 3D rigid motion on a 7-s timescale during the reconstruction of MRF data using self-navigators, improving the image quality and the quantification robustness.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Algoritmos , Artefactos , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Espectroscopía de Resonancia Magnética , Movimiento (Física) , Reproducibilidad de los Resultados , Estudios Retrospectivos
7.
Neuroimage ; 197: 557-564, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31075389

RESUMEN

Quantitative Susceptibility Mapping (QSM) provides a way of measuring iron concentration and myelination non-invasively and has the potential of becoming a tool of paramount importance in the study of a host of different pathologies. However, several experimental factors and the physical properties of magnetic susceptibility (χ) can impair the reliability of QSM, and it is therefore essential to assess QSM reproducibility for repeated acquisitions and different field strength. In particular, it has recently been demonstrated that QSM measurements strongly depend on echo time (TE): the same tissue, measured on the same scanner, exhibits different apparent frequency shifts depending on the TE used. This study aims to assess the influence of TE on intra-scanner and inter-scanner reproducibility of QSM, by using MRI systems operating at 3T and 7T. To maximize intra-scanner reproducibility it is necessary to match the TEs of the acquisition protocol, but the application of this rule leads to inconsistent QSM values across scanners operating at different static magnetic field. This study however demonstrates that, provided a careful choice of acquisition parameters, and in particular by using TEs at 3T that are approximately 2.6 times longer than those at 7T, highly reproducible whole-brain χ maps can be achieved also across different scanners, which renders QSM a suitable technique for longitudinal follow-up in clinical settings and in multi-center studies.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Algoritmos , Femenino , Humanos , Campos Magnéticos , Masculino
8.
Magn Reson Med ; 81(4): 2277-2287, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30387897

RESUMEN

PURPOSE: To obtain T2* and T2 -weighted images as well as quantitative T2* , T2 , and susceptibility maps with a novel, silent 3D imaging method, which combines zero-echo-time (ZTE) imaging with gradient- and spin-echo BURST encoding. METHODS: After a segment of standard ZTE encoding with multiple 3D radial k-space spokes, the direction of traversing k-space is reversed while excitation is switched off. This recalls gradient echoes for each spoke/excitation. This results in multiple images: one FID image from ZTE and multiple BURST echo images at different echo times weighted by a T2* decay. By adding a pair of 180° pulses with an appropriate wait period, it is also possible to obtain spin echoes, leading to T2 -weighted images. Data is reconstructed using standard 3D gridding and Fourier transformation. In vivo feasibility was demonstrated by imaging the brain of multiple healthy volunteers. RESULTS: It is possible to acquire high-quality T2* - and T2 -weighted brain images in a silent manner. From images acquired with gradient-echo ZTE-BURST, it is possible to extract quantitative T2* and magnetic susceptibility maps, whereas the spin echo version yields T2 maps. CONCLUSION: ZTE combined with BURST enables silent acquisition of T2* - and T2 -weighted images with good image quality.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Acústica , Adulto , Algoritmos , Simulación por Computador , Análisis de Fourier , Voluntarios Sanos , Humanos , Imagenología Tridimensional , Fantasmas de Imagen , Programas Informáticos
9.
MAGMA ; 31(2): 257-267, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28933028

RESUMEN

OBJECTIVE: Signal drop-off occurs in echo-planar imaging in inferior brain areas due to field gradients from susceptibility differences between air and tissue. Tailored-RF pulses based on a hyperbolic secant (HS) have been shown to partially recover signal at 3 T, but have not been tested at higher fields. MATERIALS AND METHODS: The aim of this study was to compare the performance of an optimized tailored-RF gradient-echo echo-planar imaging (TRF GRE-EPI) sequence with standard GRE-EPI at 7 T, in a passive viewing of faces or objects fMRI paradigm in healthy subjects. RESULTS: Increased temporal-SNR (tSNR) was observed in the middle and inferior temporal lobes and orbitofrontal cortex of all subjects scanned, but elsewhere tSNR decreased relative to the standard acquisition. In the TRF GRE-EPI, increased functional signal was observed in the fusiform, lateral occipital cortex, and occipital pole, regions known to be part of the visual pathway involved in face-object perception. CONCLUSION: This work highlights the potential of TRF approaches at 7 T. Paired with a reversed-gradient distortion correction to compensate for in-plane susceptibility gradients, it provides an improved acquisition strategy for future neurocognitive studies at ultra-high field imaging in areas suffering from static magnetic field inhomogeneities.


Asunto(s)
Imagen Eco-Planar , Imagen por Resonancia Magnética , Lóbulo Occipital/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen , Adulto , Aire , Algoritmos , Mapeo Encefálico , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Ondas de Radio , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido
10.
NMR Biomed ; 30(11)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28902421

RESUMEN

The aim of this work was to assess the impact of tissue structural orientation on quantitative susceptibility mapping (QSM) reliability, and to provide a criterion to identify voxels in which measures of magnetic susceptibility (χ) are most affected by spatial orientation effects. Four healthy volunteers underwent 7-T magnetic resonance imaging (MRI). Multi-echo, gradient-echo sequences were used to obtain quantitative maps of frequency shift (FS) and χ. Information from diffusion tensor imaging (DTI) was used to investigate the relationship between tissue orientation and FS measures and QSM. After sorting voxels on the basis of their fractional anisotropy (FA), the variations in FS and χ values over tissue orientation were measured. Using a K-means clustering algorithm, voxels were separated into two groups depending on the variability of measures within each FA interval. The consistency of FS and QSM values, observed at low FA, was disrupted for FA > 0.6. The standard deviation of χ measured at high FA (0.0103 ppm) was nearly five times that at low FA (0.0022 ppm). This result was consistent through data across different head positions and for different brain regions considered separately, which confirmed that such behavior does not depend on structures with different bulk susceptibility oriented along particular angles. The reliability of single-orientation QSM anticorrelates with local FA. QSM provides replicable values with little variability in brain regions with FA < 0.6, but QSM should be interpreted cautiously in major and coherent fiber bundles, which are strongly affected by structural anisotropy and magnetic susceptibility anisotropy.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Adulto , Anisotropía , Femenino , Humanos , Masculino
11.
J Magn Reson Imaging ; 44(4): 1048-55, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27042956

RESUMEN

PURPOSE: To predict local and global specific absorption rate (SAR) in individual subjects. MATERIALS AND METHODS: SAR was simulated for a head volume coil for two imaging sequences: axial T1-weighted "zero" time-of-echo (ZTE) sequence, sagittal T2-weighted fluid attenuated inversion recovery (FLAIR). Two head models (one adult, one child) were simulated inside the coil. For 19 adults and 27 children, measured B1 (+) maps were acquired, and global (head) SAR estimated by the system was recorded. We performed t-test between the B1 (+) in models and human subjects. The B1 (+) maps of individual subjects were used to scale the SAR simulated on the models, to predict local and global (head) SAR. A phantom experiment was performed to validate SAR prediction, using a fiberoptic temperature probe to measure the temperature rise due to ZTE scanning. RESULTS: The normalized B1 (+) standard deviation in subjects was not significantly different from that of the models (P > 0.68 and P > 0.54). The rise in temperature generated in the phantom by ZTE was 0.3°C; from the heat equation it followed that the temperature-based measured SAR was 2.74 W/kg, while the predicted value was 3.1 W/kg. CONCLUSION: For ZTE and FLAIR, limits on maximum local and global SAR were met in all subjects, both adults and children. To enhance safety in adults and children with 7.0 Tesla MR systems, we suggest the possibility of using SAR prediction. J. MAGN. RESON. IMAGING 2016;44:1048-1055.


Asunto(s)
Absorción de Radiación/fisiología , Envejecimiento/fisiología , Imagen por Resonancia Magnética/métodos , Modelos Biológicos , Exposición a la Radiación/análisis , Exposición a la Radiación/prevención & control , Niño , Simulación por Computador , Femenino , Humanos , Campos Magnéticos , Dosis de Radiación , Protección Radiológica/métodos , Radiometría/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
12.
Epilepsia ; 57(3): 445-54, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26778405

RESUMEN

OBJECTIVE: To assess the diagnostic yield of 7T magnetic resonance imaging (MRI) in detecting and characterizing structural lesions in patients with intractable focal epilepsy and unrevealing conventional (1.5 or 3T) MRI. METHODS: We conducted an observational clinical imaging study on 21 patients (17 adults and 4 children) with intractable focal epilepsy, exhibiting clinical and electroencephalographic features consistent with a single seizure-onset zone (SOZ) and unrevealing conventional MRI. Patients were enrolled at two tertiary epilepsy surgery centers and imaged at 7T, including whole brain (three-dimensional [3D] T1 -weighted [T1W] fast-spoiled gradient echo (FSPGR), 3D susceptibility-weighted angiography [SWAN], 3D fluid-attenuated inversion recovery [FLAIR]) and targeted imaging (2D T2*-weighted dual-echo gradient-recalled echo [GRE] and 2D gray-white matter tissue border enhancement [TBE] fast spin echo inversion recovery [FSE-IR]). MRI studies at 1.5 or 3T deemed unrevealing at the referral center were reviewed by three experts in epilepsy imaging. Reviewers were provided information regarding the suspected localization of the SOZ. The same team subsequently reviewed 7T images. Agreement in imaging interpretation was reached through consensus-based discussions based on visual identification of structural abnormalities and their likely correlation with clinical and electrographic data. RESULTS: 7T MRI revealed structural lesions in 6 (29%) of 21 patients. The diagnostic gain in detection was obtained using GRE and FLAIR images. Four of the six patients with abnormal 7T underwent epilepsy surgery. Histopathology revealed focal cortical dysplasia (FCD) in all. In the remaining 15 patients (71%), 7T MRI remained unrevealing; 4 of the patients underwent epilepsy surgery and histopathologic evaluation revealed gliosis. SIGNIFICANCE: 7T MRI improves detection of epileptogenic FCD that is not visible at conventional field strengths. A dedicated protocol including whole brain FLAIR and GRE images at 7T targeted at the suspected SOZ increases the diagnostic yield.


Asunto(s)
Epilepsias Parciales/diagnóstico , Epilepsias Parciales/fisiopatología , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Niño , Electroencefalografía/métodos , Electroencefalografía/normas , Femenino , Humanos , Imagen por Resonancia Magnética/normas , Masculino , Adulto Joven
13.
Eur Radiol ; 26(6): 1879-88, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26318369

RESUMEN

OBJECTIVES: This study aimed to assess the performance of a "Silent" zero time of echo (ZTE) sequence for T1-weighted brain imaging using a 7 T MRI system. METHODS: The Silent sequence was evaluated qualitatively by two neuroradiologists, as well as quantitatively in terms of tissue contrast, homogeneity, signal-to-noise ratio (SNR) and acoustic noise. It was compared to conventional T1-weighted imaging (FSPGR). Adequacy for automated segmentation was evaluated in comparison with FSPGR acquired at 7 T and 1.5 T. Specific absorption rate (SAR) was also measured. RESULTS: Tissue contrast and homogeneity in Silent were remarkable in deep brain structures and in the occipital and temporal lobes. Mean tissue contrast was significantly (p < 0.002) higher in Silent (0.25) than in FSPGR (0.11), which favoured automated tissue segmentation. On the other hand, Silent images had lower SNR with respect to conventional imaging: average SNR of FSPGR was 2.66 times that of Silent. Silent images were affected by artefacts related to projection reconstruction, which nevertheless did not compromise the depiction of brain tissues. Silent acquisition was 35 dB(A) quieter than FSPGR and less than 2.5 dB(A) louder than ambient noise. Six-minute average SAR was <2 W/kg. CONCLUSIONS: The ZTE Silent sequence provides high-contrast T1-weighted imaging with low acoustic noise at 7 T. KEY POINTS: • "Silent" is an MRI technique allowing zero time of echo acquisition • Its feasibility and performance were assessed on a 7 T MRI system • Image quality in several regions was higher than in conventional techniques • Imaging acoustic noise was dramatically reduced compared with conventional imaging • "Silent" is suitable for T1-weighted head imaging at 7 T.


Asunto(s)
Artefactos , Encéfalo/diagnóstico por imagen , Predicción , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Relación Señal-Ruido , Adulto Joven
14.
Magn Reson Med ; 74(6): 1515-22, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25533198

RESUMEN

PURPOSE: We herein present a spectroscopic technique for the detection of scalar-coupled metabolites based on stimulated echo acquisition mode (STEAM). The method is based on the time evolution of scalar-coupled metabolites at different mixing times and a constant echo time. The technique is optimized for targeting the metabolite glutamate at 7T. METHODS: Numerical simulations were used to optimize the parameters to maximize the chosen metabolite signal. The maximum detection efficiency and metabolite signal as a function of echo time were used to identify the optimal parameters. In vitro and in vivo validations of the method were also performed. RESULTS: This method canceled all the strong singlet lines and signals from macromolecules and preserved signals originating from the scalar-coupled metabolites. The subtracted spectrum was strongly simplified, but the complete spectral information of the traditional STEAM acquisition was retained in the sum spectrum. CONCLUSIONS: The simulations performed in this study were in agreement with the experimental results, and a clear detection of the metabolite of interest was obtained. The applicability in vivo was also demonstrated, with the selective detection of glutamate in human brain. This technique is simple, suitable for standard MR systems without sequence programming and could be used to detect other metabolites.


Asunto(s)
Algoritmos , Encéfalo/metabolismo , Ácido Glutámico/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Humanos , Imagen Molecular/métodos , Neurotransmisores/metabolismo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Cereb Cortex ; 24(1): 110-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23010749

RESUMEN

How does our brain detect changes in a natural scene? While changes by increments of specific visual attributes, such as contrast or motion coherence, can be signaled by an increase in neuronal activity in early visual areas, like the primary visual cortex (V1) or the human middle temporal complex (hMT+), respectively, the mechanisms for signaling changes resulting from decrements in a stimulus attribute are largely unknown. We have discovered opposing patterns of cortical responses to changes in motion coherence: unlike areas hMT+, V3A and parieto-occipital complex (V6+) that respond to changes in the level of motion coherence monotonically, human areas V4 (hV4), V3B, and ventral occipital always respond positively to both transient increments and decrements. This pattern of responding always positively to stimulus changes can emerge in the presence of either coherence-selective neuron populations, or neurons that are not tuned to particular coherences but adapt to a particular coherence level in a stimulus-selective manner. Our findings provide evidence that these areas possess physiological properties suited for signaling increments and decrements in a stimulus and may form a part of cortical vigilance system for detecting salient changes in the environment.


Asunto(s)
Percepción de Movimiento/fisiología , Estimulación Luminosa , Corteza Visual/fisiología , Adulto , Algoritmos , Nivel de Alerta/fisiología , Interpretación Estadística de Datos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Neuronas/fisiología , Lóbulo Occipital/fisiología , Consumo de Oxígeno/fisiología , Detección de Señal Psicológica
16.
Bioelectromagnetics ; 36(5): 358-66, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25808287

RESUMEN

Local specific absorption rate (SAR) evaluation in ultra high field (UHF) magnetic resonance (MR) systems is a major concern. In fact, at UHF, radiofrequency (RF) field inhomogeneity generates hot-spots that could cause localized tissue heating. Unfortunately, local SAR measurements are not available in present MR systems; thus, electromagnetic simulations must be performed for RF fields and SAR analysis. In this study, we used three-dimensional full-wave numerical electromagnetic simulations to investigate the dependence of local SAR at 7.0 T with respect to subject size in two different scenarios: surface coil loaded by adult and child calves and quadrature volume coil loaded by adult and child heads. In the surface coil scenario, maximum local SAR decreased with decreasing load size, provided that the RF magnetic fields for the different load sizes were scaled to achieve the same slice average value. On the contrary, in the volume coil scenario, maximum local SAR was up to 15% higher in children than in adults.


Asunto(s)
Campos Electromagnéticos , Imagen por Resonancia Magnética , Adulto , Niño , Preescolar , Simulación por Computador , Femenino , Cabeza , Humanos , Pierna , Imagen por Resonancia Magnética/instrumentación , Masculino , Modelos Biológicos
17.
Radiology ; 271(3): 831-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24601752

RESUMEN

PURPOSE: To evaluate the anatomy of the substantia nigra (SN) in healthy subjects by performing 7-T magnetic resonance (MR) imaging of the SN, and to prospectively define the accuracy of 7-T MR imaging in distinguishing Parkinson disease (PD) patients from healthy subjects on an individual basis. MATERIALS AND METHODS: The 7-T MR imaging protocol was approved by the Italian Ministry of Health and by the local competent ethics committee. SN anatomy was described ex vivo on a gross brain specimen by using highly resolved proton-density (spin-echo proton density) and gradient-recalled-echo (GRE) images, and in vivo in eight healthy subjects (mean age, 40.1 years) by using GRE three-dimensional multiecho susceptibility-weighted images. After training on appearance of SN in eight healthy subjects, the SN anatomy was evaluated twice by two blinded observers in 13 healthy subjects (mean age, 54.7 years) and in 17 PD patients (mean age, 56.9 years). Deviations from normal SN appearance were described and indicated as abnormal, and both diagnostic accuracy and intra- and interobserver agreement for diagnosis of PD with 7-T MR imaging were calculated. RESULTS: Three-dimensional multiecho susceptibility-weighted 7-T MR imaging reveals a three-layered organization of the SN allowing readers to distinguish pars compacta ventralis and dorsalis from pars reticulata. The abnormal architecture of the SN allowed a discrimination between PD patients and healthy subjects with sensitivity and specificity of 100% and 96.2% (range, 92.3%-100%), respectively. Intraobserver agreement (κ = 1) and interobserver agreement (κ = 0.932) were excellent. CONCLUSION: MR imaging at 7-T allows a precise characterization of the SN and visualization of its inner organization. Three-dimensional multiecho susceptibility-weighted images can be used to accurately differentiate healthy subjects from PD patients, which provides a novel diagnostic opportunity.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Enfermedad de Parkinson/patología , Sustancia Negra/patología , Adulto , Anciano , Cadáver , Estudios de Casos y Controles , Femenino , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética/instrumentación , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Valor Predictivo de las Pruebas , Estudios Prospectivos , Sensibilidad y Especificidad , Sustancia Negra/anatomía & histología
18.
Neuroradiology ; 56(7): 517-23, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24763967

RESUMEN

INTRODUCTION: This contribution presents a magnetic resonance imaging (MRI) acquisition technique named Tissue Border Enhancement (TBE), whose purpose is to produce images with enhanced visualization of borders between two tissues of interest without any post-processing. METHODS: The technique is based on an inversion recovery sequence that employs an appropriate inversion time to produce images where the interface between two tissues of interest is hypo-intense; therefore, tissue borders are clearly represented by dark lines. This effect is achieved by setting imaging parameters such that two neighboring tissues of interest have magnetization with equal magnitude but opposite sign; therefore, the voxels containing a mixture of each tissue (that is, the tissue interface) possess minimal net signal. The technique was implemented on a 7.0 T MRI system. RESULTS: This approach can assist the definition of tissue borders, such as that between cortical gray matter and white matter; therefore, it could facilitate segmentation procedures, which are often challenging on ultra-high-field systems due to inhomogeneous radiofrequency distribution. TBE allows delineating the contours of structural abnormalities, and its capabilities were demonstrated with patients with focal cortical dysplasia, gray matter heterotopia, and polymicrogyria. CONCLUSION: This technique provides a new type of image contrast and has several possible applications in basic neuroscience, neurogenetic research, and clinical practice, as it could improve the detection power of MRI in the characterization of cortical malformations, enhance the contour of small anatomical structures of interest, and facilitate cortical segmentation.


Asunto(s)
Algoritmos , Encefalopatías/patología , Encéfalo/patología , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
Cereb Cortex ; 23(7): 1618-29, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22661413

RESUMEN

Cells in the animal early visual cortex are sensitive to contour orientations and form repeated structures known as orientation columns. At the behavioral level, there exist 2 well-known global biases in orientation perception (oblique effect and radial bias) in both animals and humans. However, their neural bases are still under debate. To unveil how these behavioral biases are achieved in the early visual cortex, we conducted high-resolution functional magnetic resonance imaging experiments with a novel continuous and periodic stimulation paradigm. By inserting resting recovery periods between successive stimulation periods and introducing a pair of orthogonal stimulation conditions that differed by 90° continuously, we focused on analyzing a blood oxygenation level-dependent response modulated by the change in stimulus orientation and reliably extracted orientation preferences of single voxels. We found that there are more voxels preferring horizontal and vertical orientations, a physiological substrate underlying the oblique effect, and that these over-representations of horizontal and vertical orientations are prevalent in the cortical regions near the horizontal- and vertical-meridian representations, a phenomenon related to the radial bias. Behaviorally, we also confirmed that there exists perceptual superiority for horizontal and vertical orientations around horizontal and vertical meridians, respectively. Our results, thus, refined the neural mechanisms of these 2 global biases in orientation perception.


Asunto(s)
Mapeo Encefálico , Orientación/fisiología , Reconocimiento Visual de Modelos/fisiología , Corteza Visual/fisiología , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Estimulación Luminosa , Adulto Joven
20.
J Neuroimaging ; 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004778

RESUMEN

BACKGROUND AND PURPOSE: Pediatric multiple sclerosis (MS) displays different pathological features compared to adult MS, which can be studied in vivo by assessing tissue magnetic susceptibility with 3T-MRI. We aimed to assess different white matter lesions (WMLs) phenotypes in pediatric MS patients using quantitative susceptibility mapping (QSM) and susceptibility mapping weighted imaging (SMWI) over 12 months. METHODS: Eleven pediatric MS patients [female: 63.6%; mean ± standard deviation (SD) age and disease duration: 16.3 ± 2.2 and 2.4 ± 1.5; median (range) Expanded Disability Status Scale (EDSS) 1 (0-2)] underwent 3 Tesla-MRI exams and EDSS assessments at baseline and after 1 year. QSM and SMWI were obtained using 3-dimensional (3D)-segmented echo-planar-imaging with submillimetric spatial resolution. WMLs were classified according to their QSM appearance and SMWI was used to identify QSM hyperintensities ascribable to veins. Total brain volumes at baseline and follow-up were computed using high-resolution 3D T1-weighted images. RESULTS: Mean ± SD paramagnetic rim lesions (PRLs) prevalence was 7.0% ± 9.0. Fifty-four percent (6/11) of patients exhibited at least one PRL, with one patient exhibiting ≥ 4 PRLs. All patients showed QSM-iso-/hypo-intense lesions, which represented a mean ± SD of 65.8% ± 22.7 of total WMLs. QSM-hyperintense WMLs showed a positive correlation with total brain volume reduction at follow-up (r = 0.705; p =  .02). No lesion was classified as different between baseline and follow-up. CONCLUSION: Chronic compartmentalized inflammation seems to occur early in pediatric MS patients with short disease duration. A high prevalence of iso-/hypo-intense lesions was found, which could account for the higher remyelination potential in pediatric MS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA