Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33567340

RESUMEN

Chronic glucocorticoid exposure causes insulin resistance and muscle atrophy in skeletal muscle. We previously identified phosphoinositide-3-kinase regulatory subunit 1 (Pik3r1) as a primary target gene of skeletal muscle glucocorticoid receptors involved in the glucocorticoid-mediated suppression of insulin action. However, the in vivo functions of Pik3r1 remain unclear. Here, we generated striated muscle-specific Pik3r1 knockout (MKO) mice and treated them with a dexamethasone (DEX), a synthetic glucocorticoid. Treating wildtype (WT) mice with DEX attenuated insulin activated Akt activity in liver, epididymal white adipose tissue, and gastrocnemius (GA) muscle. This DEX effect was diminished in GA muscle of MKO mice, therefore, resulting in improved glucose and insulin tolerance in DEX-treated MKO mice. Stable isotope labeling techniques revealed that in WT mice, DEX treatment decreased protein fractional synthesis rates in GA muscle. Furthermore, histology showed that in WT mice, DEX treatment reduced GA myotube diameters. In MKO mice, myotube diameters were smaller than in WT mice, and there were more fast oxidative fibers. Importantly, DEX failed to further reduce myotube diameters. Pik3r1 knockout also decreased basal protein synthesis rate (likely caused by lower 4E-BP1 phosphorylation at Thr37/Thr46) and curbed the ability of DEX to attenuate protein synthesis rate. Finally, the ability of DEX to inhibit eIF2α phosphorylation and insulin-induced 4E-BP1 phosphorylation was reduced in MKO mice. Taken together, these results demonstrate the role of Pik3r1 in glucocorticoid-mediated effects on glucose and protein metabolism in skeletal muscle.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Glucocorticoides/farmacología , Glucosa/metabolismo , Resistencia a la Insulina , Músculo Estriado/efectos de los fármacos , Músculo Estriado/metabolismo , Atrofia Muscular/metabolismo , Animales , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Modelos Animales de Enfermedad , Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Estriado/patología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
2.
Sci Signal ; 10(489)2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28743803

RESUMEN

Chronic glucocorticoid exposure is associated with the development of insulin resistance. We showed that glucocorticoid-induced insulin resistance was attenuated upon ablation of Angptl4, a glucocorticoid target gene encoding the secreted protein angiopoietin-like 4, which mediates glucocorticoid-induced lipolysis in white adipose tissue. Through metabolomic profiling, we revealed that glucocorticoid treatment increased hepatic ceramide concentrations by inducing enzymes in the ceramide synthetic pathway in an Angptl4-dependent manner. Angptl4 was also required for glucocorticoids to stimulate the activities of the downstream effectors of ceramide, protein phosphatase 2A (PP2A) and protein kinase Cζ (PKCζ). We further showed that knockdown of PP2A or inhibition of PKCζ or ceramide synthesis prevented glucocorticoid-induced glucose intolerance in wild-type mice. Moreover, the inhibition of PKCζ or ceramide synthesis did not further improve glucose tolerance in Angptl4-/- mice, suggesting that these molecules were major downstream effectors of Angptl4. Overall, our study demonstrates the key role of Angptl4 in glucocorticoid-augmented hepatic ceramide production that induces whole-body insulin resistance.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/metabolismo , Ceramidas/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Proteína Quinasa C/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Animales , Ceramidas/genética , Ratones , Ratones Noqueados , Proteína Quinasa C/genética , Proteína Fosfatasa 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA