RESUMEN
BACKGROUND: Poly (ADP-ribose) polymerase inhibitors have transformed the management landscape for patients with ovarian cancer, demonstrating remarkable improvements in progression-free survival and overall survival. Unfortunately, most relapses are due to an acquired mechanism of resistance to these agents. We hypothesize that secondary cytoreductive surgery, removing resistant clones, might help to overcome the development of resistance to poly (ADP-ribose) polymerase inhibitors, prolonging their therapeutic effect. PRIMARY OBJECTIVE: To determine the efficacy of olaparib beyond progression compared with standard platinum-based chemotherapy in patients with recurrent ovarian cancer progressed during or after poly (ADP-ribose) polymerase inhibitor maintenance therapy after secondary cytoreductive surgery. STUDY HYPOTHESIS: Olaparib administered beyond progression is more effective in increasing progression-free survival and progression-free survival 2 compared with second-line platinum-based chemotherapy in patients after secondary cytoreductive surgery. TRIAL DESIGN: Phase III, randomized, open-label, multicenter trial. Eligible patients will be randomized in a 1:1 ratio to receive olaparib or platinum-based chemotherapy of the investigator's choice. MAJOR ELIGIBILITY CRITERIA: Eligible patients must have high-grade serous or endometrioid ovarian cancer progressed during or after first-line poly (ADP-ribose) polymerase inhibitor maintenance therapy and must have undergone secondary cytoreductive surgery. PRIMARY ENDPOINT: The dual primary endpoints will include progression-free survival and progression-free survival 2. Progression-free survival is defined by the investigator using Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 as the time between randomization and progression or death from any cause. Progression-free survival 2 is defined by the investigator using RECIST version 1.1 as the time frame from randomization to the second progression or death from any cause after subsequent treatment. SAMPLE SIZE: Approximately 200 patients will be enrolled in this study. ESTIMATED DATES FOR COMPLETING ACCRUAL AND PRESENTING RESULTS: Enrollment will be completed in 2024. Results will be presented in 2026. TRIAL REGISTRATION: EudraCT 2021-000245-41 NCT05255471.
Asunto(s)
Antineoplásicos , Mangifera , Neoplasias Ováricas , Adenosina Difosfato/uso terapéutico , Antineoplásicos/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/cirugía , Procedimientos Quirúrgicos de Citorreducción , Femenino , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/cirugía , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/cirugía , Ftalazinas , Piperazinas , Platino (Metal)/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Ribosa/uso terapéuticoRESUMEN
A library of seventeen novel ether phospholipid analogues, containing 5-membered heterocyclic rings (1,2,3-triazolyl, isoxazolyl, 1,3,4-oxadiazolyl and 1,2,4-oxadiazolyl) in the lipid portion were designed and synthesized aiming to identify optimised miltefosine analogues. The compounds were evaluated for their in vitro antiparasitic activity against Leishmania infantum and Leishmania donovani intracellular amastigotes, against Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the substituents of the heterocyclic ring (tail) and the oligomethylene spacer between the head group and the heterocyclic ring was found to affect the activity and toxicity of these compounds leading to a significantly improved understanding of their structure-activity relationships. The early ADMET profile of the new derivatives did not reveal major liabilities for the potent compounds. The 1,2,3-triazole derivative 27 substituted by a decyl tail, an undecyl spacer and a choline head group exhibited broad spectrum antiparasitic activity. It possessed low micromolar activity against the intracellular amastigotes of two L. infantum strains and T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes, while its cytotoxicity concentration (CC50) against THP-1 macrophages ranged between 50 and 100 µM. Altogether, our work paves the way for the development of improved ether phospholipid derivatives to control neglected tropical diseases.
Asunto(s)
Antiparasitarios/síntesis química , Antiparasitarios/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Diseño de Fármacos , Leishmaniasis/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Fosfolípidos/farmacología , Enfermedad de Chagas/parasitología , Química Clic , Humanos , Leishmania/efectos de los fármacos , Leishmaniasis/parasitología , Relación Estructura-Actividad , Trypanosoma cruzi/efectos de los fármacosRESUMEN
There is currently no effective long-term treatment for ovarian cancer (OC) resistant to poly-chemotherapy regimens based on platinum drugs. Preclinical and clinical studies have demonstrated a strong association between development of Pt-drug resistance and increased thymidylate synthase (hTS) expression, and the consequent cross-resistance to the hTS inhibitors 5-fluorouracil (5-FU) and raltitrexed (RTX). In the present work, we propose a new tool to combat drug resistance. We propose to treat OC cell lines, both Pt-sensitive and -resistant, with dual combinations of one of the four chemotherapeutic agents that are widely used in the clinic, and the new peptide, hTS inhibitor, [D-Gln4]LR. This binds hTS allosterically and, unlike classical inhibitors that bind at the catalytic pocket, causes cell growth inhibition without inducing hTS overexpression. The dual drug combinations showed schedule-dependent synergistic antiproliferative and apoptotic effects. We observed that the simultaneous treatment or 24h pre-treatment of OC cells with the peptide followed by either agent produced synergistic effects even in resistant cells. Similar synergistic or antagonistic effects were obtained by delivering the peptide into OC cells either by means of a commercial delivery system (SAINT-PhD) or by pH sensitive PEGylated liposomes. Relative to non-PEGylated liposomes, the latter had been previously characterized and found to allow macrophage escape, thus increasing their chance to reach the tumour tissue. The transition from the SAINT-PhD delivery system to the engineered liposomes represents an advancement towards a more drug-like delivery system and a further step towards the use of peptides for in vivo studies. Overall, the results suggest that the association of standard drugs, such as cDDP and/or 5-FU and/or RTX, with the novel peptidic TS inhibitor encapsulated into PEGylated pH-sensitive liposomes can represent a promising strategy for fighting resistance to cDDP and anti-hTS drugs.
Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Liposomas/química , Neoplasias Ováricas/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Apoptosis , Proliferación Celular , Quimioterapia Combinada , Femenino , Fluorouracilo/farmacología , Humanos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Polietilenglicoles/química , Quinazolinas/farmacología , Tiofenos/farmacología , Células Tumorales CultivadasRESUMEN
A benzothiophene-substituted chromenone with promising activity against Leishmania and Trypanosoma species exhibits peculiar fluorescence properties useful for identifying its complexes with target proteins in the microorganism proteomes. The emission spectra, anisotropy and time profiles of this flavonoid strongly change when moving from the free to the protein-bound forms. The same two types of emission are observed in organic solvents and their mixtures with water, with the relative band intensities depending on the solvent ability to establish hydrogen bonds with the solute. The regular emission prevails in protic solvents, while in aprotic solvents the anomalously red-shifted emission occurs from a zwitterionic tautomeric form, produced in the excited state by proton transfer within the intramolecularly H-bonded form. This interpretation finds support from an experimental and theoretical investigation of the conformational preferences of this compound in the ground and lowest excited state, with a focus on the relative twisting about the chromenone-benzothiophene interconnecting bond. An analysis of the absorption and emission spectra and of the photophysical properties of the two emitting tautomers highlights the relevance of the local microenvironment, particularly of the intra- and intermolecular hydrogen bonds in which this bioactive compound is involved, in determining both its steady-state and time-resolved fluorescence behaviour.
Asunto(s)
Teoría Funcional de la Densidad , Flavonoides/química , Flavonoides/farmacología , Fluorescencia , Proteoma/antagonistas & inhibidores , Protones , Proteínas Protozoarias/antagonistas & inhibidores , Enlace de Hidrógeno , Leishmania/efectos de los fármacos , Estructura Molecular , Proteoma/química , Proteínas Protozoarias/química , Trypanosoma/efectos de los fármacosRESUMEN
Ovarian cancer is the most lethal gynecological malignancy, often because of the frequent insurgence of chemoresistance to the drugs currently used. Thus, new therapeutical agents are needed. We tested the toxicity of 16 new DNA-intercalating agents to cisplatin (cDDP)-sensitive human ovarian carcinoma cell lines and their resistant counterparts. The compounds were the complexes of Pt(II) or Pd(II) with bipyridyl (bipy) and phenanthrolyl (phen) and with four different thiourea ancillary ligands. Within each of the four series of complexes characterized by the same thiourea ligand, the Pd(phen) drugs invariably showed the highest anti-proliferative efficacy. This paralleled both a higher intracellular drug accumulation and a more efficient DNA intercalation than all the other metal-bidentate ligand combinations. The consequent inhibition of topoisomerase II activity led to the greatest inhibition of DNA metabolism, evidenced by the inhibition of the expression of the folate cycle enzymes and a marked perturbation of cell-cycle distribution in both cell lines. These findings indicate that the particular interaction of Pd(II) with phenanthroline confers the best pharmacokinetic and pharmacodynamic properties that make this class of DNA intercalators remarkable inhibitors, even of the resistant cell growth.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/química , Resistencia a Antineoplásicos/efectos de los fármacos , Sustancias Intercalantes/farmacología , Fenantrolinas/química , Tiourea/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Cisplatino/farmacología , Complejos de Coordinación/metabolismo , Complejos de Coordinación/farmacología , ADN/química , ADN/metabolismo , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/metabolismo , Femenino , Humanos , Sustancias Intercalantes/química , Ligandos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Paladio/química , Platino (Metal)/químicaRESUMEN
Human thymidylate synthase (hTS) is pivotal for cell survival and proliferation, indeed it provides the only synthetic source of dTMP, required for DNA biosynthesis. hTS represents a validated target for anticancer chemotherapy. However, active site-targeting drugs towards hTS have limitations connected to the onset of resistance. Thus, new strategies have to be applied to effectively target hTS without inducing resistance in cancer cells. Here, we report the generation and the functional and structural characterization of a new hTS interface variant in which Arg175 is replaced by a cysteine. Arg175 is located at the interface of the hTS obligate homodimer and protrudes inside the active site of the partner subunit, in which it provides a fundamental contribution for substrate binding. Indeed, the R175C variant results catalytically inactive. The introduction of a cysteine at the dimer interface is functional for development of new hTS inhibitors through innovative strategies, such as the tethering approach. Structural analysis, performed through X-ray crystallography, has revealed that a cofactor derivative is entrapped inside the catalytic cavity of the hTS R175C variant. The peculiar binding mode of the cofactor analogue suggests new clues exploitable for the design of new hTS inhibitors.
Asunto(s)
Timidilato Sintasa/química , Timidilato Sintasa/metabolismo , Sustitución de Aminoácidos , Antineoplásicos/química , Antineoplásicos/farmacología , Sitios de Unión , Dominio Catalítico , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Variación Genética , Humanos , Modelos Moleculares , Conformación Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Timidilato Sintasa/antagonistas & inhibidores , Timidilato Sintasa/genéticaRESUMEN
Thymidylate synthase (TS) is an enzyme of paramount importance as it provides the only de novo source of deoxy-thymidine monophosphate (dTMP). dTMP, essential for DNA synthesis, is produced by the TS-catalyzed reductive methylation of 2'-deoxyuridine-5'-monophosphate (dUMP) using N5,N10-methylenetetrahydrofolate (mTHF) as a cofactor. TS is ubiquitous and a validated drug target. TS enzymes from different organisms differ in sequence and structure, but are all obligate homodimers. The structural and mechanistic differences between the human and bacterial enzymes are exploitable to obtain selective inhibitors of bacterial TSs that can enrich the currently available therapeutic tools against bacterial infections. Enterococcus faecalis is a pathogen fully dependent on TS for dTMP synthesis. In this study, we present four new crystal structures of Enterococcus faecalis and human TSs in complex with either the substrate dUMP or the inhibitor FdUMP. The results provide new clues about the half-site reactivity of Enterococcus faecalis TS and the mechanisms underlying the conformational changes occurring in the two enzymes. We also identify relevant differences in cofactor and inhibitor binding between Enterococcus faecalis and human TS that can guide the design of selective inhibitors against bacterial TSs.
Asunto(s)
Enterococcus faecalis/enzimología , Fluorodesoxiuridilato/química , Conformación Proteica , Timidina Monofosfato/química , Timidilato Sintasa/química , Sitios de Unión , Dominio Catalítico , Fluorodesoxiuridilato/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato , Timidina Monofosfato/metabolismo , Timidilato Sintasa/metabolismoRESUMEN
Thymidylate synthase (TS) is a prominent drug target for different cancer types. However, the prolonged use of its classical inhibitors, substrate analogs that bind at the active site, leads to TS overexpression and drug resistance in the clinic. In the effort to identify anti-TS drugs with new modes of action and able to overcome platinum drug resistance in ovarian cancer, octapeptides with a new allosteric inhibition mechanism were identified as cancer cell growth inhibitors that do not cause TS overexpression. To improve the biological properties, 10 cyclic peptides (cPs) were designed from the lead peptides and synthesized. The cPs were screened for the ability to inhibit recombinant human thymidylate synthase (hTS), and peptide 7 was found to act as an allosteric inhibitor more potent than its parent open-chain peptide [Pro3]LR. In cytotoxicity studies on three human ovarian cancer cell lines, IGROV-1, A2780, and A2780/CP, peptide 5 and two other cPs, including 7, showed IC50 values comparable with those of the reference drug 5-fluorouracil, of the open-chain peptide [d-Gln4]LR, and of another seven prolyl derivatives of the lead peptide LR. These promising results indicate cP 7 as a possible lead compound to be chemically modified with the aim of improving both allosteric TS inhibitory activity and anticancer effectiveness.
Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Sitio Alostérico , Sitios de Unión , Línea Celular , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Activación Enzimática , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-ActividadRESUMEN
BACKGROUND: The purpose of this study was to evaluate the clinical impact of oxaliplatin, leucovorin, and 5-fluorouracil (FOLFOX-4) chemotherapy in terms of the response rate, progression-free/overall survival (PFS/OS) and safety profile in patients with heavily pretreated recurrent epithelial ovarian cancer. METHODS: Clinical data were reviewed in 29 patients who received FOLFOX-4 as more than third-line chemotherapy, consisting of 85 mg/m2 of oxaliplatin, 200 mg/m2 of leucovorin, and bolus 400 mg/m2 on day 1 of 5-fluorouracil, followed by a 22-h infusion of 600 mg/m2 of 5-fluorouracil for 2 consecutive days every 3 weeks. We also compared the efficacy and toxicity of FOLFOX-4 with that of topotecan, a standard treatment, given at a dosage of 1.5 mg/m2 every three weeks in 26 patients. RESULTS: The median age of enrolled patients was 60 years (range 33 to 85). A median of 4 cycles (range 1-17) of FOLFOX-4 were administered. Complete response and partial response were observed in one (3.5%) and 5 (17.2.2%) patients, respectively, while stable disease was reported in 8 (27.6%) patients. Among all patients, grade 3-4 anemia, neutropenia, and thrombocytopenia were observed in 0 (0%), 5 (17.2%), and 3 (10.3%) cases, respectively. Grade 3-4 fatigue was recorded in one (3.4%) patient and diarrhea in 2 (6.9%). Median PFS and OS were 2.8 months [95% confidence interval (CI) 1.7-4.9] and 6.2 months (95% CI 2.4-14.6), respectively. No significant differences in terms of efficacy and toxicity were observed between patients receiving FOLFOX-4 and those treated with topotecan. CONCLUSIONS: The FOLFOX-4 regimen would seem to obtain similar survival rates to those of standard therapy with topotecan in platinum-resistant ovarian cancer. Further randomized trials are warranted to confirm our findings.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Terapia Recuperativa , Adulto , Anciano , Anciano de 80 o más Años , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/clasificación , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Fluorouracilo/administración & dosificación , Humanos , Leucovorina/administración & dosificación , Persona de Mediana Edad , Compuestos Organoplatinos/administración & dosificación , Neoplasias Ováricas/patología , Supervivencia sin ProgresiónRESUMEN
PURPOSE: To evaluate the potential effects of PEGylated pH-sensitive liposomes on the intracellular activity of a new peptide recently characterized as a novel inhibitor of the human thymidylate synthase (hTS) over-expressed in many drug-resistant human cancer cell lines. METHODS: Peptide-loaded pH-sensitive PEGylated (PpHL) and non-PEGylated liposomes (nPpHL) were carefully characterized and delivered to cis-platinum resistant ovarian cancer C13* cells; the influence of the PpHL on the drug intracellular activity was investigated by the Western Blot analysis of proteins involved in the pathway affected by hTS inhibition. RESULTS: Although PpHL and nPpHL showed different sizes, surface hydrophilicities and serum stabilities, both carriers entrapped the drug efficiently and stably demonstrating a pH dependent release; moreover, the different behavior against J774 macrophage cells confirmed the ability of PEGylation in protecting liposomes from the reticuloendothelial system. Comparable effects were instead observed against C13* cells and biochemical data by immunoblot analysis indicated that PEGylated pH-sensitive liposomes do not modify the proteomic profile of the cells, fully preserving the activity of the biomolecule. CONCLUSION: PpHL can be considered as efficient delivery systems for the new promising anti-cancer peptide.
Asunto(s)
Antineoplásicos/farmacología , Portadores de Fármacos/química , Liposomas/química , Nanopartículas/química , Oligopéptidos/farmacología , Animales , Antineoplásicos/química , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Liberación de Fármacos , Resistencia a Antineoplásicos , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Oligopéptidos/química , Tamaño de la Partícula , Polietilenglicoles/química , Timidilato Sintasa/antagonistas & inhibidoresRESUMEN
BACKGROUND: Multi-target approaches are necessary to properly analyze or modify the function of a biochemical pathway or a protein family. An example of such a problem is the repurposing of the known human anti-cancer drugs, antifolates, as selective anti-parasitic agents. This requires considering a set of experimentally validated protein targets in the folate pathway of major pathogenic trypanosomatid parasites and humans: (i) the primary parasite on-targets: pteridine reductase 1 (PTR1) (absent in humans) and bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS), (ii) the primary off-targets: human DHFR and TS, and (iii) the secondary on-target: human folate receptor ß, a folate/antifolate transporter. METHODS: We computationally compared the structural, dynamic and physico-chemical properties of the targets. We based our analysis on available inhibitory activity and crystallographic data, including a crystal structure of the bifunctional T. cruzi DHFR-TS with tetrahydrofolate bound determined in this work. Due to the low sequence and structural similarity of the targets analyzed, we employed a mapping of binding pockets based on the known common ligands, folate and methotrexate. RESULTS: Our analysis provides a set of practical strategies for the design of selective trypanosomatid folate pathway inhibitors, which are supported by enzyme inhibition measurements and crystallographic structures. CONCLUSIONS: The ligand-based comparative computational mapping of protein binding pockets provides a basis for repurposing of anti-folates and the design of new anti-trypanosmatid agents. GENERAL SIGNIFICANCE: Apart from the target-based discovery of selective compounds, our approach may be also applied for protein engineering or analyzing evolutionary relationships in protein families.
Asunto(s)
Descubrimiento de Drogas , Antagonistas del Ácido Fólico/farmacología , Complejos Multienzimáticos/antagonistas & inhibidores , Oxidorreductasas/antagonistas & inhibidores , Timidilato Sintasa/antagonistas & inhibidores , Tripanocidas/farmacología , Sitios de Unión , Cristalografía , Humanos , Complejos Multienzimáticos/química , Oxidorreductasas/química , Tetrahidrofolato Deshidrogenasa/química , Timidilato Sintasa/química , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimologíaRESUMEN
CONTEXT: LR-peptide, a novel hydrophilic peptide synthetized and characterized in previous work, is able to reduce the multi-drug resistance response in cisplatin (cDPP) resistant cancer cells by inhibiting human thymidylate synthase (hTS) overexpressed in several tumors, including ovarian and colon-rectal cancers, but it is unable to enter the cells spontaneously. OBJECTIVE: The aim of this work was to design and characterize liposomal vesicles as drug delivery systems for the LR peptide, evaluating the possible benefits of the pH-responsive feature in improving intracellular delivery. MATERIALS AND METHODS: For this purpose, conventional and pH-sensitive liposomes were formulated, compared regarding their physical-chemical properties (size, PDI, morphology, in vitro stability and drug release) and studied for in vitro cytotoxicity against a cDDP-resistant cancer cells. RESULTS AND DISCUSSION: Results indicated that LR peptide was successfully encapsulated in both liposomal formulations but at short incubation time only LR loaded pH-sensitive liposomes showed cell inhibition activity while for long incubation time the two kinds of liposomes demonstrated the same efficacy. CONCLUSIONS: Data provide evidence that acidic pH-triggered liposomal delivery is able to significantly reduce the time required by the systems to deliver the drug to the cells without inducing an enhancement of the efficacy of the drug.
Asunto(s)
Cisplatino/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Resistencia a Antineoplásicos/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Timidilato Sintasa/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Cisplatino/metabolismo , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Resistencia a Antineoplásicos/fisiología , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Liposomas , Timidilato Sintasa/metabolismo , Resultado del TratamientoRESUMEN
Flavonoids have previously been identified as antiparasitic agents and pteridine reductase 1 (PTR1) inhibitors. Herein, we focus our attention on the chroman-4-one scaffold. Three chroman-4-one analogues (1-3) of previously published chromen-4-one derivatives were synthesized and biologically evaluated against parasitic enzymes (Trypanosoma brucei PTR1-TbPTR1 and Leishmania major-LmPTR1) and parasites (Trypanosoma brucei and Leishmania infantum). A crystal structure of TbPTR1 in complex with compound 1 and the first crystal structures of LmPTR1-flavanone complexes (compounds 1 and 3) were solved. The inhibitory activity of the chroman-4-one and chromen-4-one derivatives was explained by comparison of observed and predicted binding modes of the compounds. Compound 1 showed activity both against the targeted enzymes and the parasites with a selectivity index greater than 7 and a low toxicity. Our results provide a basis for further scaffold optimization and structure-based drug design aimed at the identification of potent anti-trypanosomatidic compounds targeting multiple PTR1 variants.
Asunto(s)
Antiparasitarios/química , Antiparasitarios/farmacología , Cromanos/química , Cromanos/farmacología , Oxidorreductasas/antagonistas & inhibidores , Antiparasitarios/síntesis química , Sitios de Unión , Cromanos/síntesis química , Activación Enzimática/efectos de los fármacos , Concentración 50 Inhibidora , Leishmania major/efectos de los fármacos , Leishmania major/enzimología , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Oxidorreductasas/química , Unión Proteica , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimologíaRESUMEN
Our current understanding of the mechanisms of action of antitumor agents and the precise mechanisms underlying drug resistance is that these two processes are directly linked. Moreover, it is often possible to delineate chemoresistance mechanisms based on the specific mechanism of action of a given anticancer drug. A more holistic approach to the chemoresistance problem suggests that entire metabolic pathways, rather than single enzyme targets may better explain and educate us about the complexity of the cellular responses upon cytotoxic drug administration. Drugs, which target thymidylate synthase and folate-dependent enzymes, represent an important therapeutic arm in the treatment of various human malignancies. However, prolonged patient treatment often provokes drug resistance phenomena that render the chemotherapeutic treatment highly ineffective. Hence, strategies to overcome drug resistance are primarily designed to achieve either enhanced intracellular drug accumulation, to avoid the upregulation of folate-dependent enzymes, and to circumvent the impairment of DNA repair enzymes which are also responsible for cross-resistance to various anticancer drugs. The current clinical practice based on drug combination therapeutic regimens represents the most effective approach to counteract drug resistance. In the current paper, we review the molecular aspects of the activity of TS-targeting drugs and describe how such mechanisms are related to the emergence of clinical drug resistance. We also discuss the current possibilities to overcome drug resistance by using a molecular mechanistic approach based on medicinal chemistry methods focusing on rational structural modifications of novel antitumor agents. This paper also focuses on the importance of the modulation of metabolic pathways upon drug administration, their analysis and the assessment of their putative roles in the networks involved using a meta-analysis approach. The present review describes the main pathways that are modulated by TS-targeting anticancer drugs starting from the description of the normal functioning of the folate metabolic pathway, through the protein modulation occurring upon drug delivery to cultured tumor cells as well as cancer patients, finally describing how the pathways are modulated by drug resistance development. The data collected are then analyzed using network/netwire connecting methods in order to provide a wider view of the pathways involved and of the importance of such information in identifying additional proteins that could serve as novel druggable targets for efficacious cancer therapy.
Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Antagonistas del Ácido Fólico/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Neoplasias/tratamiento farmacológico , Timidilato Sintasa/antagonistas & inhibidores , Ensayos Clínicos como Asunto , Resistencia a Antineoplásicos/genética , Inhibidores Enzimáticos/uso terapéutico , Ácido Fólico/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Medicina de Precisión , Transducción de Señal , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismoRESUMEN
The preclinical study of the mechanism of action of anticancer small molecules is challenging due to the complexity of cancer biology and the fragmentary nature of available data. With the aim of identifying a protein subset characterizing the cellular activity of anticancer peptides, we used differential mass spectrometry to identify proteomic changes induced by two peptides, LR and [d-Gln(4)]LR, that inhibit cell growth and compared them with the changes induced by a known drug, pemetrexed, targeting the same enzyme, thymidylate synthase. The quantification of the proteome of an ovarian cancer cell model treated with LR yielded a differentially expressed protein data set with respect to untreated cells. This core set was expanded by bioinformatic data interpretation, the biologically relevant proteins were selected, and their differential expression was validated on three cis-platinum sensitive and resistant ovarian cancer cell lines. Via clustering of the protein network features, a broader view of the peptides' cellular activity was obtained. Differences from the mechanism of action of pemetrexed were inferred from different modulation of the selected proteins. The protein subset identification represents a method of general applicability to characterize the cellular activity of preclinical compounds and a tool for monitoring the cellular activity of novel drug candidates.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Péptidos/farmacología , Proteínas/metabolismo , Antimetabolitos Antineoplásicos/farmacología , Antineoplásicos/química , Western Blotting , Línea Celular Tumoral/efectos de los fármacos , Biología Computacional/métodos , Femenino , Ácido Fólico/metabolismo , Glutamatos/farmacología , Guanina/análogos & derivados , Guanina/farmacología , Humanos , Espectrometría de Masas/métodos , Terapia Molecular Dirigida , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Pemetrexed , Péptidos/química , Proteínas/análisis , Reproducibilidad de los Resultados , Timidilato Sintasa/antagonistas & inhibidores , Timidilato Sintasa/metabolismoRESUMEN
Vector-borne protozoal diseases (VBPD) represent an enormous health and economic burden, particularly in low- and middle-income countries. Their control requires integrated approaches that consider not only therapeutic interventions for affected human and animal populations but also preventive tools. Environmental contamination can lead to therapeutic ineffectiveness. Effective intervention must consider in-depth knowledge of the environmental factors that regulate the exposure, transmission and pathogenicity of VBPD within a One Health approach. In recent decades, the incidence and prevalence of VBPD have been substantially reduced in many regions of the world, although there are still hot spots and emerging epidemiological cycles. Except for a partially protective vaccine against malaria, vaccination is not available for any other human VBPD, and therefore epidemiological control and chemotherapy are the main control tools. Current therapeutics have several drawbacks, including reduced efficacy, toxicity and high price of safer formulations. In addition, the industrial pipeline is limited, and no therapeutic breakthroughs are expected. Integrated control of VBPD requires multitarget control systems adapted to the disease and region. In this scenario, harmonized surveillance systems, accurate reporting and increased public and private investment will ensure more rational use of the few available and new drugs.
RESUMEN
Bertram and colleagues introduce the One Health concept, an interdisciplinary framework that aims to sustainably advance and safeguard the health of humans, animals, and the environment.
Asunto(s)
Salud Única , Humanos , AnimalesRESUMEN
Parasitic vector-borne diseases (VBDs) represent nearly 20% of the global burden of infectious diseases. Moreover, the spread of VBDs is enhanced by global travel, urbanization, and climate change. Treatment of VBDs faces challenges due to limitations of existing drugs, as the potential for side effects in nontarget species raises significant environmental concerns. Consequently, considering environmental risks early in drug development processes is critically important. Here, we examine the environmental risk assessment process for veterinary medicinal products in the European Union and identify major gaps in the ecotoxicity data of these drugs. By highlighting the scarcity of ecotoxicological data for commonly used antiparasitic drugs, we stress the urgent need for considering the One Health concept. We advocate for employing predictive tools and nonanimal methodologies such as New Approach Methodologies at early stages of antiparasitic drug research and development. Furthermore, adopting progressive approaches to mitigate ecological risks requires the integration of nonstandard tests that account for real-world complexities and use environmentally relevant exposure scenarios. Such a strategy is vital for a sustainable drug development process as it adheres to the principles of One Health, ultimately contributing to a healthier and more sustainable world.
Asunto(s)
Enfermedades Transmisibles , Enfermedades Transmitidas por Vectores , Animales , Vectores de Enfermedades , Enfermedades Transmisibles/tratamiento farmacológico , Investigación , Desarrollo de MedicamentosRESUMEN
The complex network governing self-renewal in epidermal stem cells (EPSCs) is only partially defined. FOXM1 is one of the main players in this network, but the upstream signals regulating its activity remain to be elucidated. In this study, we identify cyclin-dependent kinase 1 (CDK1) as the principal kinase controlling FOXM1 activity in human primary keratinocytes. Mass spectrometry identified CDK1 as a key hub in a stem cell-associated protein network, showing its upregulation and interaction with essential self renewal-related markers. CDK1 phosphorylates FOXM1 at specific residues, stabilizing the protein and enhancing its nuclear localization and transcriptional activity, promoting self-renewal. Additionally, FOXM1 binds to the CDK1 promoter, inducing its expression.We identify the CDK1-FOXM1 feedforward loop as a critical axis sustaining EPSCs during in vitro cultivation. Understanding the upstream regulators of FOXM1 activity offers new insights into the biochemical mechanisms underlying self-renewal and differentiation in human primary keratinocytes.
Asunto(s)
Proteína Quinasa CDC2 , Células Epidérmicas , Proteína Forkhead Box M1 , Queratinocitos , Células Madre , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Humanos , Queratinocitos/metabolismo , Queratinocitos/citología , Células Madre/metabolismo , Células Madre/citología , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/genética , Células Epidérmicas/metabolismo , Fosforilación , Diferenciación Celular , Epidermis/metabolismo , Células CultivadasRESUMEN
Folate enzymes, namely, dihydrofolate reductase (DHFR) and pteridine reductase (PTR1) are acknowledged targets for the development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. Based on the amino dihydrotriazine motif of the drug Cycloguanil (Cyc), a known inhibitor of both folate enzymes, we have identified two novel series of inhibitors, the 2-amino triazino benzimidazoles (1) and 2-guanidino benzimidazoles (2), as their open ring analogues. Enzymatic screening was carried out against PTR1, DHFR, and thymidylate synthase (TS). The crystal structures of TbDHFR and TbPTR1 in complex with selected compounds experienced in both cases a substrate-like binding mode and allowed the rationalization of the main chemical features supporting the inhibitor ability to target folate enzymes. Biological evaluation of both series was performed against T. brucei and L. infantum and the toxicity against THP-1 human macrophages. Notably, the 5,6-dimethyl-2-guanidinobenzimidazole 2g resulted to be the most potent (Ki = 9 nM) and highly selective TbDHFR inhibitor, 6000-fold over TbPTR1 and 394-fold over hDHFR. The 5,6-dimethyl tricyclic analogue 1g, despite showing a lower potency and selectivity profile than 2g, shared a comparable antiparasitic activity against T. brucei in the low micromolar domain. The dichloro-substituted 2-guanidino benzimidazoles 2c and 2d revealed their potent and broad-spectrum antitrypanosomatid activity affecting the growth of T. brucei and L. infantum parasites. Therefore, both chemotypes could represent promising templates that could be valorized for further drug development.