Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ann Plast Surg ; 90(6S Suppl 4): S408-S415, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37332213

RESUMEN

BACKGROUND: Patients suffering from arthritis have limited treatment options for nonoperative management. In search of pain relief, patients have been taking over-the-counter cannabinoids. Cannabidiol (CBD) and cannabichromene (CBC) are minor cannabinoids with reported analgesic and anti-inflammatory properties and have been implicated as potential therapeutics for arthritis-related pain. To this end, we utilized a murine model to investigate the effectiveness of and mechanism by which CBC alone, CBD alone, or CBD and CBC in combination may provide a reduction in arthritis-associated inflammation. METHODS: Forty-eight mice were included in the study, which were separated into 4 groups: control group (n = 12), treatment with CBD alone (n = 12), treatment with CBC alone (n = 12), and treatment with CBD + CBC (n = 12). We induced inflammation in each mouse utilizing the collagen-induced arthritis model. At scheduled timepoints, mice were clinically assessed for weight gain, swelling, and arthritis severity. In addition, inflammation-associated serum cytokine levels were analyzed for each animal. RESULTS: Thirty-five of 48 mice survived the duration of the study resulting in the following group numbers: control group (n = 8), treatment with CBD alone (n = 9), treatment with CBC alone (n = 9), and treatment with CBD + CBC (n = 9). Animals treated with CBC and CBD + CBC showed significant weight gain between 3 and 5 weeks. Irrespective of treatment, regression analysis comparing all cytokine measurement and physical outcomes found a significant positive correlation between levels of 5 individual cytokines and both arthritis scores and swelling. Animals treated with CBD + CBC showed a significant decrease in swelling between 3 and 5 weeks compared with the control group. Cannabinoid treatment selectively affected the gene expression of eotaxin and lipopolysaccharide-induced CXC chemokine with combined treatment of CBC + CBD. CONCLUSION: Treatment with cannabinoids resulted in decreased clinical markers of inflammation. Further, the anti-inflammatory effect of CBC and CBD in conjunction was associated with a greater anti-inflammatory effect than either minor cannabinoid alone. Future work will elucidate the possibility of synergistic or entourage effects of minor cannabinoids used in combination for the treatment of arthritis-related pain and inflammation.


Asunto(s)
Artritis , Cannabidiol , Cannabinoides , Ratones , Animales , Cannabidiol/uso terapéutico , Cannabidiol/metabolismo , Cannabidiol/farmacología , Cannabinoides/uso terapéutico , Cannabinoides/metabolismo , Cannabinoides/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Artritis/tratamiento farmacológico , Artritis/etiología , Dolor , Citocinas
2.
J Biomech Eng ; 144(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34590691

RESUMEN

The characterization of human subcutaneous adipose tissue (SAT) under high-rate loading is valuable for development of biofidelic finite element human body models (FE-HBMs) to predict seat belt-pelvis interaction and injury risk in vehicle crash simulations. While material characterization of SAT has been performed at 25 °C or 37 °C, the effect of temperature on mechanical properties of SAT under high-rate and large-deformation loading has not been investigated. Similarly, while freezing is the most common preservation technique for cadaveric specimens, the effect of freeze-thaw on the mechanical properties of SAT is also absent from the literature. Therefore, the aim of this study was to determine the effect of freezing and temperature on mechanical properties of human SAT. Fresh and previously frozen human SAT specimens were obtained and tested at 25 °C and 37 °C. High-rate indentation and puncture tests were performed, and indentation-puncture force-depth responses were obtained. While the chance of material failure was found to be different between temperatures and between fresh and previously frozen tissue, statistical analyses revealed that temperature and freezing did not change the shear modulus and failure characteristics of SAT. Therefore, the results of the current study indicated that SAT material properties characterized from either fresh or frozen tissue at either 25 °C or 37 °C could be used for enhancing the biofidelity of FE-HBMs.


Asunto(s)
Tejido Adiposo , Punciones , Fenómenos Biomecánicos , Congelación , Humanos , Temperatura
3.
Ann Plast Surg ; 88(5 Suppl 5): S466-S472, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35502953

RESUMEN

BACKGROUND: Acellular dermal matrix (ADM) supported implant-based reconstruction remains the most commonly performed mode of reconstruction after breast cancer. Acellular dermal matrix clinical usage has reported benefits but requires rapid and efficient vascular and cellular incorporation into the recipient to have the best outcomes. Orderly transition from M1 to M2 macrophage phenotypic profile, coordinated in part by interleukin 4 (IL-4), is an important component of vascular stabilization and remodeling. Using the ADM substrate as a delivery device for immunomodulation of macrophage phenotype holds the potential to improve integration. METHODS: Interleukin 4 was adsorbed onto ADM samples and drug elution curves were measured. Next, experimental groups of 8 C57BL/6 mice had 5-mm ADM discs surgically placed in a dorsal window chamber with a vascularized skin flap on one side and a plastic cover slip on the other in a model of implant-based breast reconstruction. Group 1 consisted of IL-4 (5 µg) adsorbed into the ADM preoperatively and group 2 consisted of an untreated ADM control. Serial gross examinations were performed with histology at day 21 for markers of vascularization, mesenchymal cell infiltration, and macrophage lineage. RESULTS: Drug elution curves showed sustained IL-4 release for 10 days after adsorption. Serial gross examination showed similar rates of superficial vascular investment of the ADM beginning at the periphery by day 14 and increasing through day 21. Interleukin-4 treatment led to significantly increased CD31 staining of vascular endothelial cells within the ADM over the control group (P < 0.05) at 21 days. Although vimentin staining did not indicate a significant increase in fibroblasts overall, IL-4 did result in a significant increase in expression of α-smooth muscle actin. The expression of macrophage phenotype markers Arginase1 and iNOS present within the ADM were not significantly affected by IL-4 treatment at the day 21 time point. CONCLUSIONS: Acellular dermal matrix has the potential to be used for immunomodulatory cytokine delivery during the timeframe of healing. Using implanted ADM as a delivery vehicle to drive IL-4 mediated angiogenesis and vascular remodeling significantly enhanced vascularity within the ADM substrate.


Asunto(s)
Dermis Acelular , Interleucina-4 , Dermis Acelular/efectos de los fármacos , Animales , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Inmunomodulación , Interleucina-4/inmunología , Interleucina-4/farmacocinética , Interleucina-4/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Remodelación Vascular
4.
J Hand Surg Am ; 47(7): 611-620, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35637038

RESUMEN

PURPOSE: Since the passage of the Agricultural Improvement Act of 2018, hand surgeons have increasingly encountered patients seeking counseling on over-the-counter, topical cannabidiol (CBD) for the treatment of pain. To this end, we designed a human clinical trial to investigate the therapeutic potential of CBD for the treatment of pain associated with thumb basal joint arthritis. METHODS: Following Food and Drug Administration and institutional approval, a phase 1 skin test was completed with 10 healthy participants monitored for 1 week after twice-daily application of 1 mL of topical CBD (6.2 mg/mL) with shea butter. After no adverse events were identified, we proceeded with a phase 2, double-blinded, randomized controlled trial. Eighteen participants with symptomatic thumb basal joint arthritis were randomized to 2 weeks of twice-daily treatment with CBD (6.2 mg/mL CBD with shea butter) or shea butter alone, followed by a 1-week washout period and then crossover for 2 weeks with the other treatment. Safety data and physical examination measurements were obtained at baseline and after completion of each treatment arm. RESULTS: Cannabidiol treatment resulted in improvements from baseline among patient-reported outcome measures, including Visual Analog Scale pain; Disabilities of the Arm, Shoulder, and Hand; and Single Assessment Numeric Evaluation scores, compared to the control arm during the study period. There were similar physical parameters identified with range of motion, grip, and pinch strength. CONCLUSIONS: In this single-center, randomized controlled trial, topical CBD treatment demonstrated significant improvements in thumb basal joint arthritis-related pain and disability without adverse events. TYPE OF STUDY/LEVEL OF EVIDENCE: Therapeutic II.


Asunto(s)
Artritis , Cannabidiol , Articulaciones de la Mano , Artritis/tratamiento farmacológico , Cannabidiol/efectos adversos , Humanos , Dolor , Pulgar/cirugía
5.
J Biomech Eng ; 143(7)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33625495

RESUMEN

Mechanical models of adipose tissue are important for various medical applications including cosmetics, injuries, implantable drug delivery systems, plastic surgeries, biomechanical applications such as computational human body models for surgery simulation, and blunt impact trauma prediction. This article presents a comprehensive review of in vivo experimental approaches that aimed to characterize the mechanical properties of adipose tissue, and the resulting constitutive models and model parameters identified. In particular, this study examines the material behavior of adipose tissue, including its nonlinear stress-strain relationship, viscoelasticity, strain hardening and softening, rate-sensitivity, anisotropy, preconditioning, failure behavior, and temperature dependency.


Asunto(s)
Viscosidad
6.
Ann Plast Surg ; 84(6S Suppl 5): S417-S423, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32040000

RESUMEN

BACKGROUND: Ideal acellular dermal matrices (ADM) for breast reconstruction exhibit native extracellular matrix (ECM) structure to allow rapid biointegration and appropriate mechanical properties for desired clinical outcomes. In a novel in vivo model of irradiated breast reconstruction, we describe the cellular and vascular ingrowth of Artia, a porcine product chemically prepared to mimic the biomechanics of human ADM, with retained natural ECM structure to encourage cellular ingrowth. METHODS: Utilizing the murine dorsal skinfold model, Artia was implanted into 16 C57bl/6 mice. Eight of the mice received a single dose 35 Gy radiation to the skin, followed by 12 weeks to produce radiation fibrosis and 8 mice served as nonradiated controls. Real-time photoacoustic microscopy of vascular integration and oxygen saturation within the ADM were made over 14 days. At 21 days, vascular ingrowth (CD31), fibroblast scar tissue formation (alpha smooth-muscle actin α-SMA, vimentin), and macrophage function (M2/M1 ratio) were evaluated. Scanning electron microscopy images of Artia were produced to help interpret the potential orientation of cellular and vascular ingrowth. RESULTS: Repeated photoacoustic microscopy imaging demonstrated vascular ingrowth increasing over 14 days, with a commensurate increase in oxygen saturation within both radiated and nonradiated ADM-albeit at an insignificantly lower rate in the radiated group. By day 21, robust CD31 staining was seen that was insignificantly greater in the nonradiated group. Of the fibroblast markers, vimentin expression was significantly greater in the radiated group (P < 0.05). Macrophage lineage phenotype was consistent with remodeling physiology in both radiated and nonradiated groups. Scanning electron microscopy demonstrated transversely organized collagen fibrils with natural porous ECM structure to allow cellular ingrowth. CONCLUSIONS: Artia demonstrates appropriate biointegration, with increased oxygen saturation by 14 days, consistent with the performance of other collagen substrates in this model. Radiation fibrosis resulted in higher vimentin expression yet did not impact macrophage phenotype while only modestly decreasing Artia biointegration suggesting that ADM may have a role in reconstructive efforts in a radiated setting. Taken together with its enhanced biomechanics, this porcine ADM product is well poised to be clinically applicable to breast reconstruction.


Asunto(s)
Dermis Acelular , Mamoplastia , Animales , Cicatriz , Matriz Extracelular , Ratones , Microscopía , Porcinos
7.
Ann Plast Surg ; 84(6S Suppl 5): S446-S450, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32032122

RESUMEN

BACKGROUND: The purpose of this study is to assess the feasibility of a novel microporous annealed particle (MAP) scaffolding hydrogel to enable both articular cartilage and subchondral bone biointegration and chondrocyte regeneration in a rat knee osteochondral defect model. METHODS: An injectable, microporous scaffold was engineered and modified to match the mechanical properties of articular cartilage. Two experimental groups were utilized-negative saline control and MAP gel treatment group. Saline and MAP gel were injected into osteochondral defects created in the knees of Sprague-Dawley rats. Photo-annealing of the MAP gel was performed. Qualitative histologic and immunohistochemical analysis was performed of the treated defects at 2, 4, and 8 weeks postsurgery. RESULTS: The injectable MAP gel successfully annealed and was sustained within the osteochondral defect at each timepoint. Treatment with MAP gel resulted in maintained size of the osteochondral defect with evidence of tissue ingrowth and increased glycosaminoglycan production, whereas the control defects presented with evidence of disorganized scar tissue. Additionally, there was no significant inflammatory response to the MAP gel noted on histology. CONCLUSIONS: We have demonstrated the successful delivery of an injectable, flowable MAP gel scaffold into a rat knee osteochondral defect with subsequent annealing and stable integration into the healing wound. The flowable nature of this scaffold allows for minimally invasive application, for example, via an arthroscopic approach for management of wrist arthritis. The MAP gel was noted to fill the osteochondral defect and maintain the defect dimensions and provide a continuous and smooth surface for cartilage regeneration, suggesting its ability to provide a stable scaffold for tissue ingrowth. Future chemical, mechanical, and biological gel modifications may improve objective evidence of cartilage regeneration.


Asunto(s)
Cartílago Articular , Animales , Cartílago Articular/cirugía , Condrocitos , Articulación de la Rodilla , Porosidad , Ratas , Ratas Sprague-Dawley , Andamios del Tejido
8.
Adv Skin Wound Care ; 33(8): 428-436, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32701253

RESUMEN

OBJECTIVE: Oxygen is essential to wound healing; therefore, accurate monitoring can guide clinical decisions. Clinical wound assessment is often subjective, and tools to monitor wound oxygen are typically expensive, indirect, and highly variable. This study demonstrates the utility of a novel, low-cost oxygen-sensing thin film for serial assessment of wound oxygenation. DESIGN: Dual-layer films were fabricated with boron oxygen-sensing nanoparticles (BNPs) impregnated into a chitosan-polycaprolactone layer for direct wound bed contact with a relatively oxygen impermeable calcium alginate surface layer. The BNPs are a dual-emissive difluoroboron ß-diketonate dye incorporated into poly(lactic acid) nanoparticles. Under UV excitation, the BNPs emit fluorescence based on concentration and oxygen-sensitive phosphorescence. The fluorescence/phosphorescence ratio is directly proportional to oxygen concentration. METHODS: A series of in vitro oxygen challenges and in vivo murine and porcine wound healing models were used to validate the utility of the film in sensing wound oxygenation. MAIN RESULTS: In vitro testing demonstrated the oxygen-sensing capability of the BNP film and its ability to shield ambient oxygen to isolate wound oxygen. In vivo testing demonstrated the ability of the film to accurately monitor relative oxygen changes in a murine wound over time, measuring a 22% fluorescence/phosphorescence increase during acute healing. CONCLUSIONS: This study presents a low-cost, noninvasive, direct, and serial oxygen mapping technology to detect spatial differences in wound oxygenation. Clinical use of the films has the potential to monitor wound healing trajectories and guide wound care decisions.


Asunto(s)
Compuestos de Boro/química , Colorantes Fluorescentes/química , Oxígeno/metabolismo , Poliésteres/química , Cicatrización de Heridas , Animales , Materiales Biocompatibles , Transporte Biológico , Técnicas Biosensibles/métodos , Humanos , Ácido Láctico/química , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta/métodos
9.
Ann Plast Surg ; 82(1): 104-109, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30531453

RESUMEN

PURPOSE: Postmastectomy radiation therapy is an important component of the multimodality approach to later-stage breast cancers. Unfortunately, despite its proven survival benefits, postmastectomy radiation therapy is deleterious to the skin and soft tissue, causing increased complications and worse aesthetic outcomes after breast reconstruction.There is currently no effective pharmaceutical agent to mitigate the soft tissue fibrosis and hypovascularity associated with soft tissue radiation. We hypothesized that a novel topical formulation of deferoxamine (DFX) will result in improved cutaneous vascularity and soft tissue pliability in an animal model of irradiated tissue expander-based breast reconstruction. METHODS: This study consisted of 16 hairless rats divided into 4 equal groups: a control group (expander only), a tissue expanded and irradiated group, a tissue expanded + DFX group, and a tissue expanded/irradiated/DFX group. A novel topical formulation of DFX consisted of reconstituted drug dissolved in agents designed to enhance dermal penetrance. Vessels per high-power field (vHPF) were quantified histologically; micro-computed tomography angiography was used to assess vessel volume fraction (VVF) and vessel length density. RESULTS: Irradiated skin had less vascularity compared with control (3.81 vHPF vs 8.25 vHPF, P = 0.03; 0.79% VVF vs 1.53% VVF, P = 0.06). Treatment of irradiated skin with topical DFX reversed these effects, resulting in vascular findings similar to the control group histologically (7.94 vHPF vs 8.25 HPF, P = 0.985) and via micro-computed tomography angiography (1.05% VVF vs 1.53% VVF, P = 0.272). Similarly, radiation resulted in less volume expansion compared with controls (0.72 vs 0.8 mL, P = 0.04), whereas treatment with topical DFX reversed this effect, allowing for an expansion volume similar to the control group (0.81 vs 0.80 mL, P = 0.999). CONCLUSIONS: In an animal model of irradiated tissue expander-based breast reconstruction, treatment with topical DFX improved the cutaneous vascularity and tissue pliability, resulting in vascular density and final tissue expansion volumes similar to those found in the nonirradiated control group. Topical DFX may be an effective agent for the treatment of soft tissue radiation injury; future studies are indicated to further characterize this novel drug formulation.


Asunto(s)
Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/cirugía , Deferoxamina/administración & dosificación , Mamoplastia/métodos , Piel/irrigación sanguínea , Expansión de Tejido/instrumentación , Administración Tópica , Animales , Modelos Animales de Enfermedad , Femenino , Traumatismos por Radiación/tratamiento farmacológico , Distribución Aleatoria , Ratas , Flujo Sanguíneo Regional/efectos de los fármacos , Medición de Riesgo , Piel/efectos de los fármacos , Expansión de Tejido/métodos , Cicatrización de Heridas/efectos de los fármacos , Microtomografía por Rayos X/métodos
10.
J Craniofac Surg ; 30(2): 339-341, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31137450

RESUMEN

PURPOSE: A significant challenge in surgical education is to provide a meaningful hands-on experience with the pathology the trainee will see in independent practice. Craniofacial anatomy is challenging and unfamiliar to the learner. METHODS: Using preoperative computed tomography data, the authors produced an accurately sized, three-dimensional (3D) printed model of the congenital craniofacial anatomy of patients treated by the same attending surgeon-PGY4 resident surgeon pair over the course of a 6-month rotation. A preoperative stepwise surgical plan was written by the attending and resident, and the plan was marked on the 3D model by the attending and resident separately. The written and marked plans were measured for accuracy and time to completion. The resident surgeon's applicable milestone levels were assessed. RESULTS: Seven congenital craniofacial anomalies met criteria for inclusion: 4 craniosynostosis cases, 2 mandibular distractions, and 1 LeFort I distraction. The number of inaccuracies of the written plan improved from 5 to 0 for sagittal synostosis and 4 to 0 for mandibular distraction. The time to complete the written plan decreased by 22% for sagittal synostosis and 45% for mandibular distraction. The number of inaccuracies of the marked plan decreased from 5 to 0 for sagittal synostosis and 2 to 0 for mandibular distraction. Time to completion of the marked plan decreased by 76% for sagittal synostosis and 50% for mandibular distraction. Milestone scores increased an average of 1.875 levels. CONCLUSION: Three-dimensional printed craniofacial models are a positive addition to resident training and have been objectively quantified to improve the accuracy and time to completion of the surgical plan as well as progression in the plastic surgery milestones.


Asunto(s)
Craneosinostosis/cirugía , Internado y Residencia/métodos , Modelos Anatómicos , Impresión Tridimensional , Cirugía Plástica/educación , Cefalometría , Humanos , Mandíbula/cirugía , Procedimientos de Cirugía Plástica/educación , Procedimientos de Cirugía Plástica/métodos , Tomografía Computarizada por Rayos X
11.
Cleft Palate Craniofac J ; 55(3): 356-361, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29437511

RESUMEN

OBJECTIVE: The objective of this study was to validate the proof of concept of a computer-simulated cranial distraction, demonstrating accurate shape and end volume. DESIGN: Detailed modeling was performed on pre- and postoperative computed tomographic (CT) scans to generate accurate measurements of intracranial volume. Additionally, digital distraction simulations were performed on the preoperative scan and the resultant intracranial volume and shape were evaluated. SETTING: Tertiary Children's Hospital. PATIENTS, PARTICIPANTS: Preoperative and postoperative CT images were used from 10 patients having undergone cranial distraction for cephalocranial disproportion. INTERVENTIONS: None; computer simulation. MAIN OUTCOME MEASURE: Computer simulation feasibility of cranial vault distraction was demonstrated through creation of digital osteotomies, simulating distraction through translating skull segments, followed by simulated consolidation. Accuracy of the model was evaluated through comparing the intracranial volumes of actual and simulated distracted skulls. RESULTS: The developed digital distraction simulation was performed on the CT images of 10 patients. Plotting the relationship between the actual and simulated postdistraction volumes for the 10 patients yielded a slope of 1.0 and a correlation coefficient of 0.99. The average actual resultant volume change from distraction was 77.0 mL, compared to a simulated volume change of 76.9 mL. CONCLUSIONS: Digital simulation of cranial distraction was demonstrated through manipulation of the CT images and confirmed by comparing the actual to simulated volume change. This process may provide objective data in designing an individual distraction plan to optimize volume expansion and resultant cranial shape as well as patient education.


Asunto(s)
Simulación por Computador , Craneosinostosis/diagnóstico por imagen , Craneosinostosis/cirugía , Osteogénesis por Distracción/métodos , Cráneo/anomalías , Cirugía Asistida por Computador , Tomografía Computarizada por Rayos X , Preescolar , Femenino , Humanos , Imagenología Tridimensional , Lactante , Recién Nacido , Masculino , Prueba de Estudio Conceptual , Resultado del Tratamiento
12.
Ann Plast Surg ; 78(6S Suppl 5): S311-S314, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28272149

RESUMEN

INTRODUCTION: Correction of auricular deformities can be accomplished through splinting within the first few weeks of life. This is hypothesized to be due to retained circulating maternal estrogens decreasing the structural density of collagen; however, this has not been fully tested. Cartilage elasticity is dependent on the concentration of the proteoglycan aggregate, and hyaluronic acid, a constituent of proteoglycan aggregate, is increased by estrogens. Nonsurgical correction of these deformities in more developed patients has the potential to change clinical practice and eliminate surgical risks. Previous studies have demonstrated preliminary promise with the use of injectable estrogen to treat auricular deformities. For this study, we have validated an animal model and demonstrated the feasibility of a more therapeutically appropriate topical estrogen treatment in restoring neonatal plasticity of auricular cartilage. METHODS: Ears of 12 New Zealand rabbits were folded and splinted, and assigned an experimental group (estrogen, placebo, and untreated control) (n = 8 ears). Treatment ears received topical estrogen or placebo cream daily for 4 weeks, whereas controls received no treatment. The splints were removed following 2 additional weeks, and photographs were taken to calculate the retained fold angle. Biopsies were also taken for histologic analysis. RESULTS: The 8 control ears showed a statistically increased angle from a folded orientation of 46.6 degrees to return of ear position to a normal upright position of 151.2 degrees by the fourth day after splint removal. Both the estrogen-treated and placebo-treated ears responded to splinting with maintained folding (36.6 degrees and 32.5 degrees, respectively). Auricular cartilage thickness trended toward thicker in ears treated with estrogen, consistent with increased matrix components. CONCLUSIONS: Estrogen and placebo treatment with splinting of ears lead to a significant change to the cartilage configuration, validating the model. The results of this study are very encouraging and provide the foundation for a noninvasive therapeutic approach for correcting auricular deformities. Future work will include a more detailed mechanistic study evaluating the dosing of estrogen and the efficiency of dermal penetration as well as evaluating the long-term outcomes and molecular mechanism-associated cartilaginous responses to estrogen.


Asunto(s)
Cartílago Auricular/efectos de los fármacos , Cartílago Auricular/patología , Estrógenos/farmacología , Férulas (Fijadores) , Administración Tópica , Animales , Biopsia con Aguja , Plasticidad de la Célula/efectos de los fármacos , Pabellón Auricular/cirugía , Cartílago Auricular/cirugía , Inmunohistoquímica , Masculino , Modelos Animales , Conejos , Distribución Aleatoria , Valores de Referencia
13.
Ann Plast Surg ; 78(6S Suppl 5): S315-S321, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28296717

RESUMEN

INTRODUCTION: Acellular dermal matrices have revolutionized abdominal wall reconstruction; however, device failure and hernia recurrence remain significant problems. Fascia grafts are a reconstructive adjunct with increased tensile strength compared with acellular dermal matrices; however, clinical use is limited by insufficient donor material and donor site morbidity. To this end, we investigate the biomechanical properties of human abdominal wall allografts (AWAs) consisting of the anterior rectus sheath from xiphoid to pubis. METHODS: After cadaveric procurement of 6 human AWAs, the tissue was divided horizontally and a matched-sample study was performed with specimens randomized to 2 groups: fresh, unprocessed versus processed with gamma irradiation and decellularization. Specimens were evaluated for physical properties, DNA content, tensile strength, and electron microscopy. RESULTS: All AWA donors were male, with a mean age of 55.2 years (range, 35-74 years). Procured AWAs had a mean length of 21.70 ± 1.8 cm, width of 14.30 ± 1.32 cm, and area of 318.50 cm, and processing resulted in a 98.3% reduction in DNA content. Ultimate tensile strength was significantly increased after tissue processing, and after subcutaneous implantation, processed AWA demonstrated 4-fold increased tensile strength compared with unprocessed AWAs. CONCLUSIONS: Acellular AWAs represent a novel reconstructive adjunct for abdominal wall reconstruction with the potential of replacing "like with like" without additional donor site morbidity or antigenicity.


Asunto(s)
Pared Abdominal/cirugía , Dermis Acelular , Aloinjertos Compuestos/trasplante , Fascia/trasplante , Procedimientos de Cirugía Plástica/métodos , Resistencia a la Tracción/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Aloinjertos , Fenómenos Biomecánicos , Cadáver , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Recolección de Tejidos y Órganos/métodos
14.
Ann Plast Surg ; 78(6S Suppl 5): S335-S342, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28525415

RESUMEN

OBJECTIVE: The use of autologous fat as a soft tissue filler has increased over the past decade in both reconstructive and aesthetic surgeries. Enhancement of autologous fat grafts with the addition of the stromal vascular fraction (SVF) has been reported to improve long-term volume retention. Stromal vascular fraction is most commonly isolated using enzymatic digestion, but it is unknown what effect the digestion process has on the adipocytes and SVF cells that comprise the graft. Some clinicians have reported use of enzymatically digested fat grafts to alter the physical properties of the tissue in specialized applications. We have previously reported that increasing collagenase digestion duration adversely affects the viability of adipocytes and SVF cells. Here, we aimed to determine if collagenase digestion of adipocytes before grafting is detrimental to long-term graft retention and if SVF supplementation can abrogate these potential deleterious effects. METHODS AND RESULTS: We used a published xenograft model in which human lipoaspirate was implanted into the scalp of immunocompromised mice to study the effects of collagenase digestion on in vivo graft survival after 12 weeks. We used 4 experimental groups: grafts composed of collagenase-digested and nondigested adipocytes (50-minute digestion) and grafts with and without SVF supplementation. We used microcomputed tomography to serially and noninvasively quantify graft volume, in conjunction with hematoxylin-eosin staining of histological cross-sections of implanted and excised grafts to assess overall tissue viability. We found that adipocytes that were collagenase-digested before implantation had significantly lower retention rates at 12 weeks and poorer tissue health, which was assessed by quantifying the number of intact adipocytes, the number of cystic formations, and by scoring the degree of inflammation and fibrosis. Further, we found that SVF supplementation of the digested grafts improved graft survival, but not to the level observed in undigested grafts. CONCLUSIONS: We conclude that collagenase digestion adversely affects the long-term volume retention of fat grafts, but that graft retention is improved by SVF supplementation. These experimental results can serve as an initial framework to further elucidate the reported efficacy and safety of using collagenase-digested fat grafts and SVF in the clinical setting.


Asunto(s)
Tejido Adiposo/trasplante , Colagenasas/metabolismo , Supervivencia de Injerto , Xenoinjertos , Células del Estroma/trasplante , Adipocitos/trasplante , Animales , Humanos , Ratones , Modelos Animales , Sensibilidad y Especificidad , Cirugía Plástica , Recolección de Tejidos y Órganos
15.
Ann Plast Surg ; 76 Suppl 4: S255-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27187248

RESUMEN

BACKGROUND: Acellular dermal matrices (ADMs) serve as a regenerative framework for host cell integration and collagen deposition to augment the soft tissue envelope in ADM-assisted breast reconstruction-a process dependent on vascular ingrowth. To date noninvasive intra-operative imaging techniques have been inadequate to evaluate the revascularization of ADM. METHODS: We investigated the safety, feasibility, and efficacy of sidestream darkfield (SDF) microscopy to assess the status of ADM microvascular architecture in 8 patients at the time of tissue expander to permanent implant exchange during 2-stage ADM-assisted breast reconstruction. The SDF microscopy is a handheld device, which can be used intraoperatively for the real-time assessment of ADM blood flow, vessel density, vessel size, and branching pattern. The SDF microscopy was used to assess the microvascular architecture in the center and border zone of the ADM and to compare the native, non-ADM-associated capsule in each patient as a within-subject control. RESULTS: No incidences of periprosthetic infection, explantation, or adverse events were reported after SDF image acquisition. Native capsules demonstrate a complex, layered architecture with an average vessel area density of 14.9 mm/mm and total vessel length density of 12.3 mm/mm. In contrast to native periprosthetic capsules, ADM-associated capsules are not uniformly vascularized structures and demonstrate 2 zones of microvascular architecture. The ADM and native capsule border zone demonstrates palisading peripheral vascular arcades with continuous antegrade flow. The central zone of the ADM demonstrates punctate perforating vascular plexi with intermittent, sluggish flow, and intervening 2- to 3-cm watershed zones. CONCLUSIONS: Sidestream darkfield microscopy allows for real-time intraoperative assessment of ADM revascularization and serves as a potential methodology to compare revascularization parameters among commercially available ADMs. Thr SDF microscopy demonstrates that the periprosthetic capsule in ADM-assisted implant-based breast reconstruction is not a uniformly vascularized structure.


Asunto(s)
Dermis Acelular , Implantación de Mama/métodos , Regeneración Tisular Dirigida/métodos , Cuidados Intraoperatorios/métodos , Microscopía/métodos , Neovascularización Fisiológica , Andamios del Tejido , Implantación de Mama/instrumentación , Implantes de Mama , Sistemas de Computación , Estudios de Factibilidad , Femenino , Humanos , Microvasos/anatomía & histología , Microvasos/diagnóstico por imagen , Microvasos/fisiología , Expansión de Tejido/instrumentación , Expansión de Tejido/métodos , Dispositivos de Expansión Tisular
16.
Otolaryngol Head Neck Surg ; 168(2): 203-209, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35763368

RESUMEN

OBJECTIVE: The objective of this study is to describe an in vivo rabbit phonation model for glottic insufficiency that is simple and reproducible by means of unilateral transcricothyroid laryngeal muscle stimulation and high-speed video recordings of evoked phonation. STUDY DESIGN: Nonrandomized controlled animal trial. SETTING: Academic medical center. METHODS: A single operation including evoked phonation with bilateral and unilateral transcricothyroid laryngeal muscle stimulation conditions was modeled using 6 New Zealand white rabbits. The effect of stimulation method on glottic cycle, pitch, and loudness was compared. Endoscopic recordings using 5000 frames-per-second image capture technology and audiologic recordings were obtained for all phonation conditions. Primary outcome measures included means of maximum glottal area (MGA)/length pixel ratio, right and left amplitude/length pixel ratios, calculated cycle frequency, auditory recorded frequency, and maximum auditory intensity. Measurements were obtained via pixel counts using ImageJ. RESULTS: Mean MGA/length was significantly greater with unilateral, 20.30, vs bilateral, 9.62, stimulation (P = .043). Mean frequency of 479.92 Hz vs 683.46 Hz (P = .027) and mean maximum intensity of 76.3 dB vs 83.5 dB (P = .013) were significantly increased from unilateral to bilateral stimulation. There was no significant difference in mean right amplitude/length between unilateral and bilateral. CONCLUSION: The described model demonstrates a simple and reproducible means of producing glottic insufficiency due to unilateral vocal fold bowing and represents a pathway for better understanding the biomechanics and pathophysiology of glottic insufficiency due to superior laryngeal nerve injury and vocal fold immobility and offers the potential to compare treatment modalities through in vivo study.


Asunto(s)
Disfonía , Glotis , Animales , Conejos , Glotis/cirugía , Músculos Laríngeos/inervación , Fonación/fisiología , Pliegues Vocales/cirugía
17.
NPJ Regen Med ; 8(1): 10, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823180

RESUMEN

Biomaterial-enabled de novo formation of non-fibrotic tissue in situ would provide an important tool to physicians. One example application, glottic insufficiency, is a debilitating laryngeal disorder wherein vocal folds do not fully close, resulting in difficulty speaking and swallowing. Preferred management of glottic insufficiency includes bulking of vocal folds via injectable fillers, however, the current options have associated drawbacks including inflammation, accelerated resorption, and foreign body response. We developed a novel iteration of microporous annealed particle (MAP) scaffold designed to provide persistent augmentation. Following a 14-month study of vocal fold augmentation using a rabbit vocal paralysis model, most MAP scaffolds were replaced with tissue de novo that matched the mixture of fibrotic and non-fibrotic collagens of the contralateral vocal tissue. Further, persistent tissue augmentation in MAP-treated rabbits was observed via MRI and via superior vocal function at 14 months relative to the clinical standard.

18.
Plast Reconstr Surg ; 150(2): 290e-299e, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35653544

RESUMEN

SUMMARY: When first described for breast reconstruction, the presence of acellular dermal matrices was associated with increased seroma formation and infection. However, clinical safety data have gradually improved with surgeon experience to an acceptable outcomes profile of acellular dermal matrix-assisted reconstruction when compared to submuscular implant coverage. In fact, acellular dermal matrix use potentially decreases capsular contracture rates and facilitates expansion for staged prepectoral breast reconstruction. Because of new regulatory requirements, the collection of unbiased, well-powered premarket approval data summarizing long-term clinical outcomes will be essential over the coming years to understand the clinical performance of acellular dermal matrix use in breast reconstruction. Currently, the authors can highlight the physiologic benefits of acellular dermal matrix use in breast reconstruction by evaluating the components of surgical wound healing that are favorably augmented by the implanted collagen substrate. Acellular dermal matrix takes advantage of the wound healing cascade to incorporate into the patient's tissues-a process that requires a coordinated inflammatory infiltrate and angiogenesis. The presence of acellular dermal matrix augments and modulates the wound healing process to its advantage by simultaneously increasing the invasion of appropriate cellular constituents to facilitate expeditious healing and accelerate angiogenesis. In this article, the authors summarize the wound healing literature to demonstrate the mechanisms acellular dermal matrices use to biointegrate and the literature in which cellular constituents and soluble growth factors are up-regulated in the presence of acellular dermal matrix. Lastly, the authors use their experimental observations of acellular dermal matrix incorporation to corroborate the literature.


Asunto(s)
Dermis Acelular , Implantación de Mama , Implantes de Mama , Neoplasias de la Mama , Mamoplastia , Implantación de Mama/efectos adversos , Implantes de Mama/efectos adversos , Neoplasias de la Mama/complicaciones , Colágeno/uso terapéutico , Femenino , Humanos , Mamoplastia/efectos adversos , Estudios Retrospectivos , Seroma/etiología , Cicatrización de Heridas
19.
J Plast Reconstr Aesthet Surg ; 75(7): 2302-2309, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35288037

RESUMEN

INTRODUCTION: 5% of children are born with auricular deformities. Permanent recontouring can be achieved through splinting during early infancy. Beyond this time, splinting is ineffective, and patients require surgical correction. Neonatal cartilage malleability is hypothesized to be secondary to retained maternal estrogens, increasing hyaluronic acid concentration. In this article, we evaluate the efficacy of local estrogen treatments for the nonsurgical recontouring of mature auricular cartilage. METHODS: Ears of New Zealand rabbits were folded and splinted and then were randomly assigned to an experimental group, n = 10 (injected estrogen, topical estrogen, saline, or untreated). Treatment ears received injected estrogen or saline twice weekly or topical estrogen daily for 4 weeks. Two weeks post-treatment, splints were removed, and ear angles were measured. Biopsies were taken for histologic and mechanical analysis, and systemic estrogen levels were assayed. RESULTS: Ear angles stabilized by 9 days post-splinting. Topical estrogen led to a significantly smaller resting angle (121.6° ± 13.5°) compared with saline and control (135.9° ± 11.2° and 145.3° ± 13.0°, respectively). Injected estrogen led to the most pronounced angle decrease (64.5° ± 35.3°). Ears injected with estrogen also showed a significant increase in cartilage thickness. Hyaluronic acid concentration was increased in both estrogen treatment groups compared with saline. At 3 weeks post-treatment, there was no significant differences in the elastic modulus of the cartilage or serum estrogen levels among the groups. CONCLUSION: Results show the potential result of local estrogen treatment to achieve a stable nonsurgical remodeling of mature auricular cartilage. Further study is needed to evaluate the molecular mechanism and improve the transdermal estrogen delivery to optimize treatment regimen.


Asunto(s)
Cartílago Auricular , Oído Externo , Animales , Cartílago Auricular/cirugía , Oído Externo/cirugía , Estrógenos/farmacología , Ácido Hialurónico/farmacología , Conejos , Solución Salina , Férulas (Fijadores)
20.
J Mech Behav Biomed Mater ; 120: 104578, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34010796

RESUMEN

The pediatric skull differs drastically from the adult skull in terms of composition, rigidity, and structure. However, there is limited data which quantifies the mechanical properties of the pediatric skull. The lack of mechanical data may inhibit desired pediatric craniofacial surgical outcomes as current methodologies and materials employed for the pediatric population are adapted from those used for adults. In this study, normally discarded parietal bone tissue from eight pediatric craniosynostosis surgery patients (aged 4 to 10 months) was collected during reconstructive surgery and prepared for microstructural analysis and mechanical testing. Up to 12 individual coupon samples of fresh, never frozen tissue were harvested from each specimen and prepared for four-point bending testing to failure. The microstructure of each sample was analyzed using micro-computed tomography before and after each mechanical test. From this analysis, effective geometric and mechanical properties were determined for each sample (n = 68). Test results demonstrated that the pediatric parietal skull was 2.0 mm (±0.4) thick, with a porosity of 36% (±14). The effective modulus of the tissue samples, determined from the initial slope of the sample stress-strain response using Euler beam theory and a nonlinear Ramberg-Osgood stress-strain relationship, was 4.2 GPa (±2.1), which was approximately three times less stiff than adult skull tissue reported in the literature. Furthermore, the pediatric skull was able to bend up to flexural failure strains of 6.7% (±2.0), which was approximately five times larger than failure strains measured in adult skull. The disparity between the measured mechanical properties of pediatric skull tissue and adult skull tissue points towards the need to reevaluate current surgical technologies, such as pediatric cranial surgical hardware, so that they are more compatible with pediatric tissue.


Asunto(s)
Hueso Parietal , Cráneo , Adulto , Niño , Humanos , Porosidad , Cráneo/diagnóstico por imagen , Estrés Mecánico , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA