Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 20(12): e3001921, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36548240

RESUMEN

Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories. Emperor penguins are identified as the most vulnerable taxon, followed by other seabirds and dry soil nematodes. We find that implementing 10 key threat management strategies in parallel, at an estimated present-day equivalent annual cost of US$23 million, could benefit up to 84% of Antarctic taxa. Climate change is identified as the most pervasive threat to Antarctic biodiversity and influencing global policy to effectively limit climate change is the most beneficial conservation strategy. However, minimising impacts of human activities and improved planning and management of new infrastructure projects are cost-effective and will help to minimise regional threats. Simultaneous global and regional efforts are critical to secure Antarctic biodiversity for future generations.


Asunto(s)
Conservación de los Recursos Naturales , Spheniscidae , Animales , Humanos , Regiones Antárticas , Biodiversidad , Especies Introducidas , Cambio Climático , Ecosistema
2.
Int Microbiol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867105

RESUMEN

Hydrocarbon and heavy metal pollution are amongst the most severe and prevalent environmental problems due to their toxicity and persistence. Bioremediation using microorganisms is considered one of the most effective ways to treat polluted sites. In the present study, we unveil the bioremediation potential of Brucella pituitosa strain BU72. Besides its ability to grow on multiple hydrocarbons as the sole carbon source and highly tolerant to several heavy metals, BU72 produces different exopolysaccharide-based surfactants (EBS) when grown with glucose or with crude oil as sole carbon source. These EBS demonstrated particular and specific functional groups as determined by Fourier transform infrared (FTIR) spectral analysis that showed a strong absorption peak at 3250 cm-1 generated by the -OH group for both EBS. The FTIR spectra of the produced EBS revealed major differences in functional groups and protein content. To better understand the EBS production coupled with the degradation of hydrocarbons and heavy metal resistance, the genome of strain BU72 was sequenced. Annotation of the genome revealed multiple genes putatively involved in EBS production pathways coupled with resistance to heavy metals genes such as arsenic tolerance and cobalt-zinc-cadmium resistance. The genome sequence analysis showed the potential of BU72 to synthesise secondary metabolites and the presence of genes involved in plant growth promotion. Here, we describe the physiological, metabolic, and genomic characteristics of Brucella pituitosa strain BU72, indicating its potential as a bioremediation agent.

3.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34732568

RESUMEN

Numerous diverse microorganisms reside in the cold desert soils of continental Antarctica, though we lack a holistic understanding of the metabolic processes that sustain them. Here, we profile the composition, capabilities, and activities of the microbial communities in 16 physicochemically diverse mountainous and glacial soils. We assembled 451 metagenome-assembled genomes from 18 microbial phyla and inferred through Bayesian divergence analysis that the dominant lineages present are likely native to Antarctica. In support of earlier findings, metagenomic analysis revealed that the most abundant and prevalent microorganisms are metabolically versatile aerobes that use atmospheric hydrogen to support aerobic respiration and sometimes carbon fixation. Surprisingly, however, hydrogen oxidation in this region was catalyzed primarily by a phylogenetically and structurally distinct enzyme, the group 1l [NiFe]-hydrogenase, encoded by nine bacterial phyla. Through gas chromatography, we provide evidence that both Antarctic soil communities and an axenic Bacteroidota isolate (Hymenobacter roseosalivarius) oxidize atmospheric hydrogen using this enzyme. Based on ex situ rates at environmentally representative temperatures, hydrogen oxidation is theoretically sufficient for soil communities to meet energy requirements and, through metabolic water production, sustain hydration. Diverse carbon monoxide oxidizers and abundant methanotrophs were also active in the soils. We also recovered genomes of microorganisms capable of oxidizing edaphic inorganic nitrogen, sulfur, and iron compounds and harvesting solar energy via microbial rhodopsins and conventional photosystems. Obligately symbiotic bacteria, including Patescibacteria, Chlamydiae, and predatory Bdellovibrionota, were also present. We conclude that microbial diversity in Antarctic soils reflects the coexistence of metabolically flexible mixotrophs with metabolically constrained specialists.


Asunto(s)
Clima Desértico , Gases/metabolismo , Cubierta de Hielo/microbiología , Microbiota , Microbiología del Suelo , Regiones Antárticas , Procesos Autotróficos , Biodiversidad , Hidrogenasas/metabolismo , Metagenoma , Oxidación-Reducción , Procesos Fototróficos
4.
Appl Environ Microbiol ; 89(12): e0062923, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37971255

RESUMEN

IMPORTANCE: The hyperarid Namib Desert is one of the oldest deserts on Earth. It contains multiple clusters of playas which are saline-rich springs surrounded by halite evaporites. Playas are of great ecological importance, and their indigenous (poly)extremophilic microorganisms are potentially involved in the precipitation of minerals such as carbonates and sulfates and have been of great biotechnological importance. While there has been a considerable amount of microbial ecology research performed on various Namib Desert edaphic microbiomes, little is known about the microbial communities inhabiting its multiple playas. In this work, we provide a comprehensive taxonomic and functional potential characterization of the microbial, including viral, communities of sediment mats and halites from two distant salt pans of the Namib Desert, contributing toward a better understanding of the ecology of this biome.


Asunto(s)
Bacterias , Microbiota , Bacterias/genética , Clima Desértico , Microbiología del Suelo , Cloruro de Sodio
5.
Int Microbiol ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37968548

RESUMEN

The study of the soil resistome is important in understanding the evolution of antibiotic resistance and its dissemination between the clinic and the environment. However, very little is known about the soil resistome, especially of those from deserts. Here, we characterize the bacterial communities, using targeted sequencing of the 16S rRNA genes, and both the resistome and the mobilome in Namib Desert soils, using shotgun metagenomics. We detected a variety of antibiotic resistance genes (ARGs) that conferred resistance to antibiotics such as elfamycin, rifampicin, and fluoroquinolones, metal/biocide resistance genes (MRGs/BRGs) conferring resistance to metals such as arsenic and copper, and mobile genetic elements (MGEs) such as the ColE1-like plasmid. The presence of metal/biocide resistance genes in close proximity to ARGs indicated a potential for co-selection of resistance to antibiotics and metals/biocides. The co-existence of MGEs and horizontally acquired ARGs most likely contributed to a decoupling between bacterial community composition and ARG profiles. Overall, this study indicates that soil bacterial communities in Namib Desert soils host a diversity of resistance elements and that horizontal gene transfer, rather than host phylogeny, plays an essential role in their dynamics.

6.
Proc Natl Acad Sci U S A ; 117(36): 22293-22302, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32839321

RESUMEN

During austral summer field seasons between 1999 and 2018, we sampled at 91 locations throughout southern Victoria Land and along the Transantarctic Mountains for six species of endemic microarthropods (Collembola), covering a latitudinal range from 76.0°S to 87.3°S. We assembled individual mitochondrial cytochrome c oxidase subunit 1 (COI) sequences (n = 866) and found high levels of sequence divergence at both small (<10 km) and large (>600 km) spatial scales for four of the six Collembola species. We applied molecular clock estimates and assessed genetic divergences relative to the timing of past glacial cycles, including collapses of the West Antarctic Ice Sheet (WAIS). We found that genetically distinct lineages within three species have likely been isolated for at least 5.54 My to 3.52 My, while the other three species diverged more recently (<2 My). We suggest that Collembola had greater dispersal opportunities under past warmer climates, via flotation along coastal margins. Similarly increased opportunities for dispersal may occur under contemporary climate warming scenarios, which could influence the genetic structure of extant populations. As Collembola are a living record of past landscape evolution within Antarctica, these findings provide biological evidence to support geological and glaciological estimates of historical WAIS dynamics over the last ca 5 My.


Asunto(s)
Variación Genética , Invertebrados/genética , Suelo , Animales , Regiones Antárticas , Cambio Climático , Cubierta de Hielo , Estaciones del Año
7.
Microb Ecol ; 83(3): 689-701, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34105010

RESUMEN

Precipitation is one of the major constraints influencing the diversity, structure, and activity of soil microbial communities in desert ecosystems. However, the effect of changes in precipitation on soil microbial communities in arid soil microbiomes remains unresolved. In this study, using 16S rRNA gene high-throughput sequencing and shotgun metagenome sequencing, we explored changes in taxonomic composition and functional potential across two zones in the Namib Desert with contrasting precipitation regime. We found that precipitation regime had no effect on taxonomic and functional alpha-diversity, but that microbial community composition and functional potential (beta-diversity) changed with increased precipitation. For instance, Acidobacteriota and 'resistance to antibiotics and toxic compounds' related genes were relatively more abundant in the high-rainfall zone. These changes were largely due to a small set of microbial taxa, some of which were present in low abundance (i.e. members of the rare biosphere). Overall, these results indicate that key climatic factors (i.e. precipitation) shape the taxonomic and functional attributes of the arid soil microbiome. This research provides insight into how changes in precipitation patterns associated with global climate change may impact microbial community structure and function in desert soils.


Asunto(s)
Microbiota , Suelo , Clima Desértico , Metagenoma , ARN Ribosómico 16S/genética , Suelo/química , Microbiología del Suelo
8.
Environ Microbiol ; 23(7): 3867-3880, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33817951

RESUMEN

In hyper-arid soil environments, photosynthetic microorganisms are largely restricted to hypolithic (sub-lithic) habitats: i.e., on the ventral surfaces of translucent pebbles in desert pavements. Here, we combined fluorometric, spectroscopic, biochemical and metagenomic approaches to investigate in situ the light transmission properties of quartz stones in the Namib Desert, and assess the photosynthetic activity of the underlying hypolithic cyanobacterial biofilms. Quartz pebbles greatly reduced the total photon flux to the ventral surface biofilms and filtered out primarily the short wavelength portion of the solar spectrum. Chlorophylls d and f were not detected in biofilm pigment extracts; however, hypolithic cyanobacterial communities showed some evidence of adaptation to sub-lithic conditions, including the prevalence of genes encoding Helical Carotenoid Proteins, which are associated with desiccation stress. Under water-saturated conditions, hypolithic communities showed no evidence of light stress, even when the quartz stones were exposed to full midday sunlight. This initial study creates a foundation for future in-situ and laboratory exploration of various adaptation mechanisms employed by photosynthetic organisms forming hypolithic microbial communities.


Asunto(s)
Cianobacterias , Clima Desértico , Cianobacterias/genética , Ecosistema , Fotosíntesis , Microbiología del Suelo
9.
Environ Microbiol ; 23(11): 6377-6390, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34347349

RESUMEN

The loss of cellular water (desiccation) and the resulting low cytosolic water activity are major stress factors for life. Numerous prokaryotic and eukaryotic taxa have evolved molecular and physiological adaptions to periods of low water availability or water-limited environments that occur across the terrestrial Earth. The changes within cells during the processes of desiccation and rehydration, from the activation (and inactivation) of biosynthetic pathways to the accumulation of compatible solutes, have been studied in considerable detail. However, relatively little is known on the metabolic status of organisms in the desiccated state; that is, in the sometimes extended periods between the drying and rewetting phases. During these periods, which can extend beyond decades and which we term 'anhydrobiosis', organismal survival could be dependent on a continued supply of energy to maintain the basal metabolic processes necessary for critical functions such as macromolecular repair. Here, we review the state of knowledge relating to the function of microorganisms during the anhydrobiotic state, highlighting substantial gaps in our understanding of qualitative and quantitative aspects of molecular and biochemical processes in desiccated cells.


Asunto(s)
Desecación , Eucariontes , Adaptación Fisiológica , Eucariontes/metabolismo , Agua/metabolismo
10.
Microb Ecol ; 82(4): 859-869, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33656686

RESUMEN

Dust is a major vehicle for the dispersal of microorganisms across the globe. While much attention has been focused on microbial dispersal in dust plumes from major natural dust sources, very little is known about the fractionation processes that select for the "dust microbiome." The recent identification of highly emissive, agricultural land dust sources in South Africa has provided the opportunity to study the displacement of microbial communities through dust generation and transport. In this study, we aimed to document the microbial communities that are carried in the dust from one of South Africa's most emissive locations, and to investigate the selective factors that control the partitioning of microbial communities from soil to dust. For this purpose, dust samples were generated at different emission sources using a Portable In-Situ Wind Erosion Lab (PI-SWERL), and the taxonomic composition of the resulting microbiomes was compared with the source soils. Dust emission processes resulted in the clear fractionation of the soil bacterial community, where dust samples were significantly enriched in spore-forming taxa. Conversely, little fractionation was observed in the soil fungal communities, such that the dust fungal fingerprint could be used to identify the source soil. Dust microbiomes were also found to vary according to the emission source, suggesting that land use significantly affected the structure and fractionation of microbial communities transported in dust plumes. In addition, several potential biological allergens of fungal origin were detected in the dust microbiomes, highlighting the potential detrimental effects of dust plumes emitted in South Africa. This study represents the first description of the fractionation of microbial taxa occurring at the source of dust plumes and provides a direct link between land use and its impact on the dust microbiome.


Asunto(s)
Polvo , Microbiota , Bacterias/genética , Polvo/análisis , Granjas , Microbiología del Suelo
11.
Environ Microbiol ; 22(6): 2261-2272, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32216022

RESUMEN

Rare biosphere represents the majority of Earth's biodiversity and performs vital ecological functions, yet little is known about its biogeographical patterns and community assembly processes in terrestrial ecosystems. Herein, we investigated the community composition and phylogeny of rare (relative abundance <0.1%) and abundant (>1%) bacteria in dryland grassland soils on the Tibetan Plateau. Results revealed similar biogeographical patterns of rare and abundant bacteria at both compositional and phylogenetic levels, but rare subcommunity was more heavily influenced by stochasticity (72%) than the abundant (57%). The compositional variation of rare bacteria was less explained by environmental factors (41%) than that of the abundant (80%), while the phylogeny of rare bacteria (36%) was more explained than that of the abundant (29%). The phylogeny of rare bacteria was equally explained by local factors (soil and vegetation) and geospatial distance (11.5% and 11.9% respectively), while that of the abundant was more explained by geospatial distance (22.1%) than local factors (11.3%). Furthermore, a substantially tighter connection between the community phylogeny and composition was observed in rare (R2 = 0.65) than in abundant bacteria (R2 = 0.08). Our study provides novel insights into the assembly processes and biographical patterns of rare and abundant bacteria in dryland soils.


Asunto(s)
Bacterias/clasificación , Pradera , Microbiología del Suelo , Bacterias/genética , Biodiversidad , Filogenia , Suelo , Tibet
12.
Extremophiles ; 23(6): 681-686, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31372752

RESUMEN

Glycoside hydrolases, particularly cellulases, xylanases and mannanases, are essential for the depolymerisation of lignocellulosic substrates in various industrial bio-processes. In the present study, a novel glycoside hydrolase from Paenibacillus mucilaginosus (PmGH) was expressed in E. coli, purified and characterised. Functional analysis indicated that PmGH is a 130 kDa thermophilic multi-modular and multi-functional enzyme, comprising a GH5, a GH6 and two CBM3 domains and exhibiting cellulase, mannanase and xylanase activities. The enzyme displayed optimum hydrolytic activities at pH 6 and 60 °C and moderate thermostability. Homology modelling of the full-length protein highlighted the structural and functional novelty of native PmGH, with no close structural homologs identified. However, homology modelling of the individual GH5, GH6 and the two CBM3 domains yielded excellent models based on related structures from the Protein Data Bank. The catalytic GH5 and GH6 domains displayed a (ß/α)8 and a distorted seven stranded (ß/α) fold, respectively. The distinct homology at the domain level but low homology of the full-length protein suggests that this protein evolved by exogenous gene acquisition and recombination.


Asunto(s)
Proteínas Bacterianas/química , Glicósido Hidrolasas/química , Modelos Moleculares , Paenibacillus/enzimología , Proteínas Bacterianas/genética , Glicósido Hidrolasas/genética , Calor , Concentración de Iones de Hidrógeno , Paenibacillus/genética , Dominios Proteicos , Estructura Secundaria de Proteína
13.
Microb Ecol ; 77(1): 191-200, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29948018

RESUMEN

Plant-microbe interactions mediate both the invasiveness of introduced plant species and the impacts that they have in invaded ecosystems. Although the phylogenetic composition of the rhizospheric microbiome of Acacia dealbata (an invasive Australian tree species) has been investigated, little is known about the functional potential of the constituents of these altered microbial communities. We used shotgun DNA sequencing to better understand the link between bacterial community composition and functional capacity in the rhizospheric microbiomes associated with invasive A. dealbata populations in South Africa. Our analysis showed that several genes associated with plant growth-promoting (PGP) traits were significantly overrepresented in the rhizospheric metagenomes compared to neighbouring bulk soils collected away from A. dealbata stands. The majority of these genes are involved in the metabolism of nitrogen, carbohydrates and vitamins, and in various membrane transport systems. Overrepresented genes were linked to a limited number of bacterial taxa, mostly Bradyrhizobium species, the preferred N-fixing rhizobial symbiont of Australian acacias. Overall, these findings suggest that A. dealbata enriches rhizosphere soils with potentially beneficial microbial taxa, and that members of the genus Bradyrhizobium may play an integral role in mediating PGP processes that may influence the success of this invader when colonizing novel environments.


Asunto(s)
Acacia/microbiología , Especies Introducidas , Microbiota/fisiología , Rizosfera , Microbiología del Suelo , Acacia/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/genética , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Metabolismo de los Hidratos de Carbono , ADN Bacteriano/genética , Genes Bacterianos/genética , Metagenoma , Interacciones Microbianas/fisiología , Microbiota/genética , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Filogenia , Desarrollo de la Planta , Rhizobium/genética , Rhizobium/fisiología , Análisis de Secuencia de ADN , Sudáfrica , Vitaminas/metabolismo
14.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29802195

RESUMEN

The late embryogenesis abundant (LEA) family is composed of a diverse collection of multidomain and multifunctional proteins found in all three domains of the tree of life, but they are particularly common in plants. Most members of the family are known to play an important role in abiotic stress response and stress tolerance in plants but are also part of the plant hypersensitive response to pathogen infection. The mechanistic basis for LEA protein functionality is still poorly understood. The group of LEA 2 proteins harbor one or more copies of a unique domain, the water stress and hypersensitive response (WHy) domain. This domain sequence has recently been identified as a unique open reading frame (ORF) in some bacterial genomes (mostly in the phylum Firmicutes), and the recombinant bacterial WHy protein has been shown to exhibit a stress tolerance phenotype in Escherichia coli and an in vitro protein denaturation protective function. Multidomain phylogenetic analyses suggest that the WHy protein gene sequence may have ancestral origins in the domain Archaea, with subsequent acquisition in Bacteria and eukaryotes via endosymbiont or horizontal gene transfer mechanisms. Here, we review the structure, function, and nomenclature of LEA proteins, with a focus on the WHy domain as an integral component of the LEA constructs and as an independent protein.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/química , Evolución Molecular , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Bacterias/química , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/química , Plantas/clasificación , Plantas/genética , Dominios Proteicos
15.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29453256

RESUMEN

A hot desert hypolith metagenomic DNA sequence data set was screened in silico for genes annotated as acetyl xylan esterases (AcXEs). One of the genes identified encoded an ∼36-kDa protein (Axe1NaM1). The synthesized gene was cloned and expressed, and the resulting protein was purified. NaM1 was optimally active at pH 8.5 and 30°C and functionally stable at salt concentrations of up to 5 M. The specific activity and catalytic efficiency were 488.9 U mg-1 and 3.26 × 106 M-1 s-1, respectively. The crystal structure of wild-type NaM1 was solved at a resolution of 2.03 Å, and a comparison with the structures and models of more thermostable carbohydrate esterase 7 (CE7) family enzymes and variants of NaM1 from a directed evolution experiment suggests that reduced side-chain volume of protein core residues is relevant to the thermal stability of NaM1. Surprisingly, a single point mutation (N96S) not only resulted in a simultaneous improvement in thermal stability and catalytic efficiency but also increased the acyl moiety substrate range of NaM1.IMPORTANCE AcXEs belong to nine carbohydrate esterase families (CE1 to CE7, CE12, and CE16), of which CE7 enzymes possess a unique and narrow specificity for acetylated substrates. All structurally characterized members of this family are moderately to highly thermostable. The crystal structure of a novel, mesophilic CE7 AcXE (Axe1NaM1), from a soil metagenome, provides a basis for comparisons with thermostable CE7 enzymes. Using error-prone PCR and site-directed mutagenesis, we enhanced both the stability and activity of the mesophilic AcXE. With comparative structural analyses, we have also identified possible thermal stability determinants. These are valuable for understanding the thermal stability of enzymes within this family and as a guide for future protein engineering of CE7 and other α/ß hydrolase enzymes.


Asunto(s)
Acetilesterasa/genética , Bacterias/genética , Proteínas Bacterianas/genética , Metagenoma/genética , Acetilesterasa/química , Acetilesterasa/metabolismo , África Austral , Secuencia de Aminoácidos , Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Clima Desértico , Alineación de Secuencia
16.
Extremophiles ; 22(1): 1-12, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29110088

RESUMEN

Lignocellulosic biomass is a promising feedstock for the manufacture of biodegradable and renewable bioproducts. However, the complex lignocellulosic polymeric structure of woody tissue is difficult to access without extensive industrial pre-treatment. Enzyme processing of partly depolymerised biomass is an established technology, and there is evidence that high temperature (extremely thermophilic) lignocellulose degrading enzymes [carbohydrate active enzymes (CAZymes)] may enhance processing efficiency. However, wild-type thermophilic CAZymes will not necessarily be functionally optimal under industrial pre-treatment conditions. With recent advances in synthetic biology, it is now potentially possible to build CAZyme constructs from individual protein domains, tailored to the conditions of specific industrial processes. In this review, we identify a 'toolbox' of thermostable CAZyme domains from extremely thermophilic organisms and highlight recent advances in CAZyme engineering which will allow for the rational design of CAZymes tailored to specific aspects of lignocellulose digestion.


Asunto(s)
Dominio Catalítico , Hidrolasas/química , Lignina/metabolismo , Liasas/química , Termotolerancia , Bacterias/enzimología , Calor Extremo , Hidrolasas/metabolismo , Liasas/metabolismo , Plantas/enzimología
17.
Microb Cell Fact ; 17(1): 156, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30285747

RESUMEN

BACKGROUND: Geobacillus and Parageobacillus are two ecologically diverse thermophilic genera within the phylum Firmicutes. These taxa have long been of biotechnological interest due to their ability to secrete thermostable enzymes and other biomolecules that have direct applications in various industrial and clinical fields. Despite the commercial and industrial interest in these microorganisms, the full scope of the secreted protein, i.e. the secretome, of Geobacillus and Parageobacillus species remains largely unexplored, with most studies focusing on single enzymes. A genome-wide exploration of the global secretome can provide a platform for understanding the extracellular functional "protein cloud" and the roles that secreted proteins play in the survival and adaptation of these biotechnologically relevant organisms. RESULTS: In the present study, the global secretion profile of 64 Geobacillus and Parageobacillus strains, comprising 772 distinct proteins, was predicted using comparative genomic approaches. Thirty-one of these proteins are shared across all strains used in this study and function in cell-wall/membrane biogenesis as well as transport and metabolism of carbohydrates, amino acids and inorganic ions. An analysis of the clustering patterns of the secretomes of the 64 strains according to shared functional orthology revealed a correlation between the secreted profiles of different strains and their phylogeny, with Geobacillus and Parageobacillus species forming two distinct functional clades. CONCLUSIONS: The in silico characterization of the global secretome revealed a metabolically diverse set of secreted proteins, which include proteases, glycoside hydrolases, nutrient binding proteins and toxins.


Asunto(s)
Genoma Bacteriano/genética , Geobacillus/genética
18.
Microb Ecol ; 75(1): 193-203, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28647755

RESUMEN

The hyperarid Namib desert is a coastal desert in southwestern Africa and one of the oldest and driest deserts on the planet. It is characterized by a west/east increasing precipitation gradient and by regular coastal fog events (extending up to 75 km inland) that can also provide soil moisture. In this study, we evaluated the role of this natural aridity and xeric gradient on edaphic microbial community structure and function in the Namib desert. A total of 80 individual soil samples were collected at 10-km intervals along a 190-km transect from the fog-dominated western coastal region to the eastern desert boundary. Seventeen physicochemical parameters were measured for each soil sample. Soil parameters reflected the three a priori defined climatic/xeric zones along the transect ("fog," "low rain," and "high rain"). Microbial community structures were characterized by terminal restriction fragment length polymorphism fingerprinting and shotgun metaviromics, and their functional capacities were determined by extracellular enzyme activity assays. Both microbial community structures and activities differed significantly between the three xeric zones. The deep sequencing of surface soil metavirome libraries also showed shifts in viral composition along the xeric transect. While bacterial community assembly was influenced by soil chemistry and stochasticity along the transect, variations in community "function" were apparently tuned by xeric stress.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Microbiota , Microbiología del Suelo , Bacterias/genética , Biodiversidad , Clima Desértico , Namibia , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , Suelo/química
19.
Nature ; 552(7685): 336-337, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32080615
20.
Nature ; 552(7685): 336-337, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29293237
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA