Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bioconjug Chem ; 28(4): 890-896, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28192992

RESUMEN

Antibiotic susceptibility tests have been used for years as a crucial diagnostic tool against antibiotic-resistant bacteria. However, due to a lack of biomarkers specific to resistant types, these approaches are often time-consuming, inaccurate, and inflexible in drug selections. Here, we present a novel susceptibility test method named protein-adsorbed nanoparticle-mediated matrix-assisted laser desorption-ionization mass spectrometry, or PANMS. Briefly, we adsorb five different proteins (ß-casein, α-lactalbumin, human serum albumin, fibrinogen, and avidin) onto the surface of Fe3O4. Upon interaction with bacteria surface, proteins were displaced from the nanoparticle surface, the amounts of which were quantified by matrix-assisted laser desorption ionization mass spectrometry. We find that the protein displacement profile was different distinctive among different bacteria strains and, in particular, between wild-type and drug-resistant strains. More excitingly, we observe bacteria resistant to drugs of the same mechanisms share similar displacement profiles on a linear discriminant analysis (LDA) map. This suggests the possibility of using PANMS to identify the type of mechanism behind antibiotic resistance, which was confirmed in a blind test. Given that PANMS is free of drug incubation and the whole procedure takes less than 50 min, it holds great potential as a high-throughput, low-cost, and accurate drug susceptibility test in the clinic.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Nanopartículas de Magnetita/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Adsorción , Ampicilina/farmacología , Bacillus subtilis/citología , Bacterias/efectos de los fármacos , Diseño de Equipo , Escherichia coli/citología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Humanos , Proteínas Inmovilizadas/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación
2.
Adv Funct Mater ; 26(11): 1757-1768, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31749670

RESUMEN

Photodynamic therapy (PDT) is a promising treatment modality for cancer management. So far, most PDT studies have focused on delivery of photosensitizers to tumors. O2, another essential component of PDT, is not artificially delivered but taken from the biological milieu. However, cancer cells demand a large amount of O2 to sustain their growth and that often leads to low O2 levels in tumors. The PDT process may further potentiate the oxygen deficiency, and in turn, adversely affect the PDT efficiency. In the present study, a new technology called red blood cell (RBC)-facilitated PDT, or RBC-PDT, is introduced that can potentially solve the issue. As the name tells, RBC-PDT harnesses erythrocytes, an O2 transporter, as a carrier for photosensitizers. Because photosensitizers are adjacent to a carry-on O2 source, RBC-PDT can efficiently produce 1O2 even under low oxygen conditions. The treatment also benefits from the long circulation of RBCs, which ensures a high intraluminal concentration of photosensitizers during PDT and hence maximizes damage to tumor blood vessels. When tested in U87MG subcutaneous tumor models, RBC-PDT shows impressive tumor suppression (76.7%) that is attributable to the codelivery of O2 and photosensitizers. Overall, RBC-PDT is expected to find wide applications in modern oncology.

3.
Small ; 10(7): 1245-9, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24352976

RESUMEN

An ancient material for magnetic resonance (MR) imaging: For the first time, Fe5C2 is prepared as colloidal stable nanoparticles with good aqueous stability. The nanoparticles boast strong magnetization, excellent chemical inertness, low toxicity, and one of the highest r2 relaxivities reported to date. These nanoparticles hold great potential in MR imaging as well as in other biomedical areas.


Asunto(s)
Compuestos Inorgánicos de Carbono , Medios de Contraste , Compuestos de Hierro , Imagen por Resonancia Magnética , Nanopartículas , Neoplasias/diagnóstico , Animales , Línea Celular Tumoral , Humanos , Ratones , Nanopartículas/ultraestructura , Fantasmas de Imagen
4.
Theranostics ; 5(11): 1225-32, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26379788

RESUMEN

Iron oxide nanoparticles have been extensively used as T2 contrast agents for liver-specific magnetic resonance imaging (MRI). The applications, however, have been limited by their mediocre magnetism and r2 relaxivity. Recent studies show that Fe5C2 nanoparticles can be prepared by high temperature thermal decomposition. The resulting nanoparticles possess strong and air stable magnetism, suggesting their potential as a novel type of T2 contrast agent. To this end, we improve the synthetic and surface modification methods of Fe5C2 nanoparticles, and investigated the impact of size and coating on their performances for liver MRI. Specifically, we prepared 5, 14, and 22 nm Fe5C2 nanoparticles and engineered their surface by: 1) ligand addition with phospholipids, 2) ligand exchange with zwitterion-dopamine-sulfonate (ZDS), and 3) protein adsorption with casein. It was found that the size and surface coating have varied levels of impact on the particles' hydrodynamic size, viability, uptake by macrophages, and r2 relaxivity. Interestingly, while phospholipid- and ZDS-coated Fe5C2 nanoparticles showed comparable r2, the casein coating led to an r2 enhancement by more than 2 fold. In particular, casein coated 22 nm Fe5C2 nanoparticle show a striking r2 of 973 mM(-1)s(-1), which is one of the highest among all of the T2 contrast agents reported to date. Small animal studies confirmed the advantage of Fe5C2 nanoparticles over iron oxide nanoparticles in inducing hypointensities on T2-weighted MR images, and the particles caused little toxicity to the host. The improvements are important for transforming Fe5C2 nanoparticles into a new class of MRI contrast agents. The observations also shed light on protein-based surface modification as a means to modulate contrast ability of magnetic nanoparticles.


Asunto(s)
Compuestos Inorgánicos de Carbono/administración & dosificación , Materiales Biocompatibles Revestidos/administración & dosificación , Medios de Contraste/administración & dosificación , Compuestos de Hierro/administración & dosificación , Hígado/patología , Imagen por Resonancia Magnética/métodos , Magnetismo , Nanopartículas/administración & dosificación , Animales , Compuestos Inorgánicos de Carbono/efectos adversos , Compuestos Inorgánicos de Carbono/farmacocinética , Caseínas/metabolismo , Materiales Biocompatibles Revestidos/efectos adversos , Materiales Biocompatibles Revestidos/farmacocinética , Medios de Contraste/efectos adversos , Medios de Contraste/farmacocinética , Compuestos de Hierro/efectos adversos , Compuestos de Hierro/farmacocinética , Modelos Animales , Nanopartículas/efectos adversos
5.
Adv Mater ; 26(39): 6761-6766, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25178894

RESUMEN

Nanoprobes for MRI and optical imaging are demonstrated. Gd@C-dots possess strong fluorescence and can effectively enhance signals on T1 -weighted MR images. The nanoprobes have low toxicity, and, despite a relatively large size, can be efficiently excreted by renal clearance from the host after systemic injection.


Asunto(s)
Carbono/química , Gadolinio/química , Riñón/metabolismo , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Animales , Cápsulas , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Medios de Contraste/química , Medios de Contraste/farmacocinética , Medios de Contraste/toxicidad , Estabilidad de Medicamentos , Gadolinio/farmacocinética , Gadolinio/toxicidad , Humanos , Ligandos , Ratones , Oligopéptidos/química
6.
Methods Mol Biol ; 1025: 225-35, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23918341

RESUMEN

Iron oxide nanoparticles, due to their exceptional magnetic property, biocompatibility, and biodegradability, have long been studied as contrast agents for magnetic resonance imaging (Xie et al., Curr Med Chem 16(10):1278-1294, 2009; Xie et al., Adv Drug deliv Rev 62(11):1064-1079, 2010). While previous applications mostly target reticuloendothelial system (RES) organs such as liver and lymph nodes, recent efforts have been made to impart targeting peptides or antibodies onto particle surface to enable site-specific targeting after systemic administration (Xie et al., Adv Drug Deliv Rev 62(11):1064-1079, 2010; Cai and Chen, Small 3(11):1840-1854, 2007; Corot et al., Adv Drug Deliv Rev 58 (14):1471-1504, 2006; Xie et al., Acc Chem Res 44(10):883-892). Moreover, other imaging functionalities can be loaded onto nanoparticles to achieve multimodality imaging probes (Cai and Chen, Small 3(11):1840-1854, 2007; Lee et al., J Nucl Med Soc Nucl Med 49(8):1371-1379, 2008). In this protocol, we describe the procedure of constructing an iron oxide nanoparticle (IONP)-based probe with high affinity towards integrin αvß3 for positron emission tomography (PET) and magnetic resonance imaging (MRI) dual modality imaging. The related characterizations and validation experiments, including particle concentration determination, Prussian blue staining, animal model preparation, and in vivo PET/MRI imaging will also be discussed.


Asunto(s)
Compuestos Férricos/química , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Péptidos/química , Tomografía de Emisión de Positrones/métodos , Animales , Línea Celular , Línea Celular Tumoral , Medios de Contraste/química , Radioisótopos de Cobre , Diagnóstico por Imagen/métodos , Xenoinjertos , Humanos , Integrina alfaVbeta3/metabolismo , Ratones , Neoplasias/ultraestructura
7.
ACS Nano ; 7(6): 4830-7, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23718215

RESUMEN

Ferritin (FRT) is a major iron storage protein found in humans and most living organisms. Each ferritin is composed of 24 subunits, which self-assemble to form a cage-like nanostructure. FRT nanocages can be genetically modified to present a peptide sequence on the surface. Recently, we demonstrated that Cys-Asp-Cys-Arg-Gly-Asp-Cys-Phe-Cys (RGD4C)-modified ferritin can efficiently home to tumors through RGD-integrin αvß3 interaction. Though promising, studies on evaluating surface modified ferritin nanocages as drug delivery vehicles have seldom been reported. Herein, we showed that after being precomplexed with Cu(II), doxorubicin can be loaded onto RGD modified apoferritin nanocages with high efficiency (up to 73.49 wt %). When studied on U87MG subcutaneous tumor models, these doxorubicin-loaded ferritin nanocages showed a longer circulation half-life, higher tumor uptake, better tumor growth inhibition, and less cardiotoxicity than free doxorubicin. Such a technology might be extended to load a broad range of therapeutics and holds great potential in clinical translation.


Asunto(s)
Apoferritinas/química , Portadores de Fármacos/química , Nanopartículas/química , Oligopéptidos/química , Transporte Biológico , Línea Celular Tumoral , Doxorrubicina/química , Portadores de Fármacos/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA