Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38553046

RESUMEN

Exercise is known to benefit motor skill learning in health and neurological disease. Evidence from brain stimulation, genotyping, and Parkinson's disease studies converge to suggest that the dopamine D2 receptor, and shifts in the cortical excitation and inhibition (E:I) balance, are prime candidates for the drivers of exercise-enhanced motor learning. However, causal evidence using experimental pharmacological challenge is lacking. We hypothesized that the modulatory effect of the dopamine D2 receptor on exercise-induced changes in the E:I balance would determine the magnitude of motor skill acquisition. To test this, we measured exercise-induced changes in excitation and inhibition using paired-pulse transcranial magnetic stimulation (TMS) in 22 healthy female and male humans, and then had participants learn a novel motor skill-the sequential visual isometric pinch task (SVIPT). We examined the effect of D2 receptor blockade (800 mg sulpiride) on these measures within a randomized, double-blind, placebo-controlled design. Our key result was that motor skill acquisition was driven by an interaction between the D2 receptor and E:I balance. Specifically, poorer skill learning was related to an attenuated shift in the E:I balance in the sulpiride condition, whereas this interaction was not evident in placebo. Our results demonstrate that exercise-primed motor skill acquisition is causally influenced by D2 receptor activity on motor cortical circuits.


Asunto(s)
Ejercicio Físico , Corteza Motora , Destreza Motora , Receptores de Dopamina D2 , Estimulación Magnética Transcraneal , Humanos , Masculino , Femenino , Receptores de Dopamina D2/metabolismo , Adulto , Destreza Motora/fisiología , Destreza Motora/efectos de los fármacos , Estimulación Magnética Transcraneal/métodos , Adulto Joven , Corteza Motora/fisiología , Corteza Motora/efectos de los fármacos , Ejercicio Físico/fisiología , Método Doble Ciego , Inhibición Neural/fisiología , Inhibición Neural/efectos de los fármacos , Aprendizaje/fisiología , Potenciales Evocados Motores/fisiología , Potenciales Evocados Motores/efectos de los fármacos , Sulpirida/farmacología , Antagonistas de Dopamina/farmacología
2.
J Physiol ; 602(12): 2945-2959, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747052

RESUMEN

Regular exercise benefits learning and memory in older adults, but the neural mechanisms mediating these effects remain unclear. Evidence in young adults indicates that acute exercise creates a favourable environment for synaptic plasticity by enhancing cortical disinhibition. As such, we investigated whether plasticity-related disinhibition mediated the relationship between cardiorespiratory fitness and memory function in healthy older adults (n = 16, mean age = 66.06). Participants completed a graded maximal exercise test and assessments of visual and verbal memory, followed by two counterbalanced sessions involving 20 min of either high-intensity interval training exercise or rest. Disinhibition was measured following intermittent theta burst stimulation via paired-pulse transcranial magnetic stimulation. In line with our hypotheses, we observed a positive correlation between cardiorespiratory fitness and verbal memory, which was mediated by plasticity-related cortical disinhibition. Our novel finding implicates cortical disinhibition as a mechanism through which the effects of acute bouts of exercise may translate to improved memory in older adults. This finding extends current understanding of the physiological mechanisms underlying the positive influence of cardiorespiratory fitness for memory function in older adults, and further highlights the importance of promoting exercise engagement to maintain cognitive health in later life. KEY POINTS: There are well established benefits of regular exercise for memory function in older adults, but the mechanisms are unclear. Cortical disinhibition is important for laying down new memories, and is enhanced following acute exercise in young adults, suggesting it is a potential mechanism underlying these benefits in ageing. Older adults completed a fitness test and assessments of memory, followed by two sessions involving either 20 min of exercise or rest. Disinhibition was measured following intermittent theta burst stimulation via paired-pulse transcranial magnetic stimulation. Cardiorespiratory fitness was positively associated with memory performance. Higher fitness was associated with enhanced cortical disinhibition following acute exercise. Cortical disinhibition completely mediated the relationship between fitness and memory. This novel finding provides a mechanistic account for the positive influence of cardiorespiratory fitness on memory in later life, and emphasises the importance of regular exercise for cognitive health in older populations.


Asunto(s)
Capacidad Cardiovascular , Ejercicio Físico , Memoria , Estimulación Magnética Transcraneal , Humanos , Masculino , Femenino , Anciano , Memoria/fisiología , Ejercicio Físico/fisiología , Persona de Mediana Edad , Corteza Cerebral/fisiología , Envejecimiento/fisiología
3.
J Physiol ; 601(24): 5733-5750, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37917116

RESUMEN

Cardiorespiratory exercise is known to modulate motor cortical plasticity in young adults, but the influence of ageing on this relationship is unknown. Here, we compared the effects of a single session of cardiorespiratory exercise on motor cortical plasticity in young and older adults. We acquired measures of cortical excitatory and inhibitory activity of the primary motor cortex using transcranial magnetic stimulation (TMS) from 20 young (mean ± SD = 25.30 ± 4.00 years, 14 females) and 20 older (mean ± SD = 64.10 ± 6.50 years, 11 females) healthy adults. Single- and paired-pulse TMS measurements were collected before and after a 20 min bout of high-intensity interval cycling exercise or an equivalent period of rest, and again after intermittent theta burst stimulation (iTBS). In both young (P = 0.027, Cohen's d = 0.87) and older adults (P = 0.006, Cohen's d = 0.85), there was an increase in glutamatergic excitation and a reduction in GABAergic inhibition from pre- to postexercise. However, in contrast to younger adults, older adults showed an attenuated plasticity response to iTBS following exercise (P = 0.011, Cohen's d = 0.85). These results demonstrate an age-dependent decline in cortical plasticity and indicate that a preceding bout of high-intensity interval exercise might be less effective for enhancing primary motor cortex plasticity in older adults. Our findings align with the hypothesis that the capacity for cortical plasticity is altered in older age. KEY POINTS: Exercise enhances motor cortical plasticity in young adults, but how ageing influences this effect is unknown. Here, we compared primary motor cortical plasticity responses in young and older adults before and after a bout of high-intensity interval exercise and again after a plasticity-inducing protocol, intermittent theta burst stimulation. In both young and older adults, exercise led to an increase in glutamatergic excitation and a reduction in GABAergic inhibition. Our key result was that older adults showed an attenuated plasticity response to theta burst stimulation following exercise, relative to younger adults. Our findings demonstrate an age-dependent decline in exercise-enhanced cortical plasticity and indicate that a preceding bout of high-intensity interval exercise might be less effective for enhancing primary motor cortex plasticity in older adults.


Asunto(s)
Corteza Motora , Plasticidad Neuronal , Femenino , Adulto Joven , Humanos , Anciano , Plasticidad Neuronal/fisiología , Corteza Motora/fisiología , Potenciales Evocados Motores/fisiología , Estimulación Magnética Transcraneal/métodos , Envejecimiento
4.
Hippocampus ; 32(3): 137-152, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34961996

RESUMEN

Regular exercise has numerous benefits for brain health, including the structure and function of the hippocampus. The hippocampus plays a critical role in memory function, and is altered in a number of psychiatric disorders associated with memory impairments (e.g., depression and schizophrenia), as well as healthy aging. While many studies have focused on how regular exercise may improve hippocampal integrity in older individuals, less is known about these effects in young to middle-aged adults. Therefore, we assessed the associations of regular exercise and cardiorespiratory fitness with hippocampal structure and function in these age groups. We recruited 40 healthy young to middle-aged adults, comprised of two groups (n = 20) who self-reported either high or low levels of exercise, according to World Health Organization guidelines. We assessed cardiorespiratory fitness using a graded exercise test (VO2 max) and hippocampal structure via manual tracing of T1-weighted magnetic resonance images. We also assessed hippocampal function using magnetic resonance spectroscopy to derive estimates of N-acetyl-aspartate concentration and hippocampal-dependent associative memory and pattern separation tasks. We observed evidence of increased N-acetyl-aspartate concentration and associative memory performance in individuals engaging in high levels of exercise. However, no differences in hippocampal volume or pattern separation capacity were observed between groups. Cardiorespiratory fitness was positively associated with left and right hippocampal volume and N-acetyl-aspartate concentration. However, no associations were observed between cardiorespiratory fitness and associative memory or pattern separation. Therefore, we provide evidence that higher levels of exercise and cardiorespiratory fitness are associated with improved hippocampal structure and function. Exercise may provide a low-risk, effective method of improving hippocampal integrity in an early-to-mid-life stage.


Asunto(s)
Capacidad Cardiovascular , Hipocampo , Adulto , Anciano , Ejercicio Físico , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Trastornos de la Memoria , Persona de Mediana Edad
5.
J Physiol ; 599(11): 2907-2932, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33599980

RESUMEN

KEY POINTS: TMS is commonly used to study excitatory/inhibitory neurotransmission in cortical circuits. Changes in cortical excitability following TMS are typically measured from hand (using EMG; limited to motor cortex) or scalp (using EEG); however, it is unclear whether these two measures represent the same activity when assessing motor cortex. We found that TMS-EMG and TMS-EEG measures of motor cortex excitability are differentially affected by sensory confounds at different time points, masking any actual relationship between them in the time domain. In the frequency domain, local high-frequency oscillations in EEG recordings were minimally confounded by sensory artefacts and demonstrated strong correlations with EMG measures of cortical excitability across time, regardless of TMS intensity or waveform. Therefore, despite the effects of sensory artefacts, the two measures of motor cortex excitability share a response component, suggesting that they index a similar cortical activity and perhaps the same neuronal population. ABSTRACT: Transcranial magnetic stimulation (TMS) is a powerful tool for investigating cortical circuits. Changes in cortical excitability following TMS are typically assessed by measuring changes in either conditioned motor-evoked potentials (MEPs) following paired-pulse TMS over motor cortex or evoked potentials measured with electroencephalography following single-pulse TMS (TEPs). However, it is unclear whether these two measures of cortical excitability index the same cortical response. Twenty-four healthy participants received local and interhemispheric paired-pulse TMS over motor cortex with eight inter-pulse intervals, sub- and suprathreshold conditioning intensities, and two different pulse waveforms, while MEPs were recorded from a hand muscle. TEPs were also recorded in response to single-pulse TMS using the conditioning pulse alone. The relationships between TEPs and conditioned-MEPs were evaluated using metrics sensitive to both their magnitude at each time point and their overall shape across time. The impacts of undesired sensory potentials resulting from TMS pulse and muscle contractions were also assessed on both measures. Both conditioned-MEPs and TEPs were sensitive to re-afferent somatosensory activity following motor-evoked responses, but over different post-stimulus time points. Moreover, the amplitude of low-frequency oscillations in TEPs was strongly correlated with the sensory potentials, whereas early and local high-frequency responses showed minimal relationships. Accordingly, conditioned-MEPs did not correlate with TEPs in the time domain but showed high shape similarity with the amplitude of high-frequency oscillations in TEPs. Therefore, despite the effects of sensory confounds, the TEP and MEP measures share a response component, suggesting that they index a similar cortical response and perhaps the same neuronal populations.


Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Electroencefalografía , Potenciales Evocados , Potenciales Evocados Motores , Humanos
6.
Cereb Cortex ; 30(1): 101-112, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31041988

RESUMEN

A single bout of cardiovascular exercise can enhance plasticity in human cortex; however, the intensity required for optimal enhancement is debated. We investigated the effect of exercise intensity on motor cortex synaptic plasticity, using transcranial magnetic stimulation. Twenty healthy adults (Mage = 35.10 ± 13.25 years) completed three sessions. Measures of cortico-motor excitability (CME) and inhibition were obtained before and after a 20-min bout of either high-intensity interval exercise, moderate-intensity continuous exercise, or rest, and again after intermittent theta burst stimulation (iTBS). Results showed that high-intensity interval exercise enhanced iTBS plasticity more than rest, evidenced by increased CME and intracortical facilitation, and reduced intracortical inhibition. In comparison, the effect of moderate-intensity exercise was intermediate between high-intensity exercise and rest. Importantly, analysis of each participant's plasticity response profile indicated that high-intensity exercise increased the likelihood of a facilitatory response to iTBS. We also established that the brain-derived neurotrophic factor Val66Met polymorphism attenuated plasticity responses following high-intensity exercise. These findings suggest that high-intensity interval exercise should be considered not only when planning exercise interventions designed to enhance neuroplasticity, but also to maximize the therapeutic potential of non-invasive brain stimulation. Additionally, genetic profiling may enhance efficacy of exercise interventions for brain health.


Asunto(s)
Excitabilidad Cortical , Entrenamiento de Intervalos de Alta Intensidad , Corteza Motora/fisiología , Plasticidad Neuronal , Adulto , Factor Neurotrófico Derivado del Encéfalo/genética , Femenino , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Estimulación Magnética Transcraneal
7.
J Physiol ; 596(4): 691-702, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29159914

RESUMEN

KEY POINTS: Magnetic resonance spectroscopy was conducted before and after high-intensity interval exercise. Sensorimotor cortex GABA concentration increased by 20%. The increase was positively correlated with the increase in blood lactate. There was no change in dorsolateral prefrontal cortex. There were no changes in the glutamate-glutamine-glutathione peak. ABSTRACT: High-intensity exercise increases the concentration of circulating lactate. Cortical uptake of blood borne lactate increases during and after exercise; however, the potential relationship with changes in the concentration of neurometabolites remains unclear. Although changes in neurometabolite concentration have previously been demonstrated in primary visual cortex after exercise, it remains unknown whether these changes extend to regions such as the sensorimotor cortex (SM) or executive regions such as the dorsolateral prefrontal cortex (DLPFC). In the present study, we explored the acute after-effects of high-intensity interval training (HIIT) on the concentration of gamma-Aminobutyric acid (GABA) and the combined glutamate-glutamine-glutathione (Glx) spectral peak in the SM and DLPFC, as well as the relationship with blood lactate levels. Following HIIT, there was a robust increase in GABA concentration in the SM, as evident across the majority of participants. This change was not observed in the DLPFC. Furthermore, the increase in SM GABA was positively correlated with an increase in blood lactate. There were no changes in Glx concentration in either region. The observed increase in SM GABA concentration implies functional relevance, whereas the correlation with lactate levels may relate to the metabolic fate of exercise-derived lactate that crosses the blood-brain barrier.


Asunto(s)
Ejercicio Físico , Lactatos/sangre , Corteza Sensoriomotora/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adulto , Femenino , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Glutatión/metabolismo , Humanos , Masculino
8.
J Cogn Neurosci ; 29(4): 593-604, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27897671

RESUMEN

Gamma-aminobutyric acid (GABA) inhibition shapes motor cortex output, gates synaptic plasticity in the form of long-term potentiation, and plays an important role in motor learning. Remarkably, recent studies have shown that acute cardiovascular exercise can improve motor memory, but the cortical mechanisms are not completely understood. We investigated whether an acute bout of lower-limb high-intensity interval (HIT) exercise could promote motor memory formation in humans through changes in cortical inhibition within the hand region of the primary motor cortex. We used TMS to assess the input-output relationship, along with inhibition involving GABAA and GABAB receptors. Measures were obtained before and after a 20-min session of HIT cycling (exercise group) or rest (control group). We then had the same participants learn a new visuomotor skill and perform a retention test 5 hr later in the absence of sleep. No differences were found in corticomotor excitability or GABAB inhibition; however, synaptic GABAA inhibition was significantly reduced for the exercise group but not the control group. HIT exercise was found to enhance motor skill consolidation. These findings link modification of GABA to improved motor memory consolidation after HIT exercise and suggest that the beneficial effects of exercise on consolidation might not be dependent on sleep.


Asunto(s)
Potenciales Evocados Motores/fisiología , Ejercicio Físico/fisiología , Consolidación de la Memoria/fisiología , Corteza Motora/fisiología , Destreza Motora/fisiología , Inhibición Neural/fisiología , Sueño/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto , Electromiografía , Femenino , Humanos , Masculino , Receptores de GABA-A , Receptores de GABA-B , Adulto Joven
9.
Eur J Neurosci ; 45(12): 1512-1523, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28449195

RESUMEN

Response inhibition is an important executive process studied by clinical and experimental psychologists, neurophysiologists and cognitive neuroscientists alike. Stop-signal paradigms are popular because they are grounded in a theory that provides methods to estimate the latency of an unobservable process: the stop-signal reaction time (SSRT). Critically, SSRT estimates can be biased by skew of the response time distribution and gradual slowing over the course of the experiment. Here, we present a series of experiments that directly compare three common stop-signal paradigms that differ in the distribution of response times. The results show that the widely used choice response (CR) and simple response (SR) time versions of the stop-signal paradigm are particularly susceptible to skew of the response time distribution and response slowing, and that using the anticipated response (AR) paradigm based on the Slater-Hammel task offers a viable alternative to obtain more reliable SSRT estimates.


Asunto(s)
Anticipación Psicológica , Conducta de Elección , Inhibición Neural , Adulto , Anciano , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Función Ejecutiva , Femenino , Humanos , Masculino
10.
Cereb Cortex ; 26(1): 12-22, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25085883

RESUMEN

In young adults, canceling an initiated action depends on the right inferior frontal cortex (IFC), presupplementary motor area (preSMA), and the basal ganglia. Older adults show response inhibition deficits, but how this relates to functional brain activation remains unclear. Using event-related functional magnetic resonance imaging, we tested whether older adults (N = 20) exhibit overactivation during stop-signal inhibition as shown for attentional control tasks, or reduced activity compared with young adults (N = 20). We used a modified stop-signal task involving coupled bimanual responses and manipulated whether both or just one hand was cued to stop. Stop-task difficulty was matched across groups. We found a group by condition interaction in supramarginal gyrus, anterior insula, rIFC, and preSMA, with activation increasing for successful Stop versus Go trials in the young adults only. Comparing the groups on Stop trials revealed preSMA and striatum hypoactivity for older adults. White matter tracts connecting rIFC, preSMA, and the subthalamic nuclei were associated with stronger activation of preSMA in older adults, suggesting that maintenance of the brain's structure has positive implications for brain function.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Lateralidad Funcional/fisiología , Inhibición Psicológica , Vías Nerviosas/fisiología , Desempeño Psicomotor/fisiología , Anciano , Anciano de 80 o más Años , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Tiempo de Reacción
11.
J Cogn Neurosci ; 28(7): 909-19, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26942320

RESUMEN

Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists.


Asunto(s)
Agonistas de Dopamina/farmacología , Predisposición Genética a la Enfermedad , Conducta Impulsiva/efectos de los fármacos , Indoles/farmacología , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Catecol O-Metiltransferasa/genética , Toma de Decisiones/efectos de los fármacos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Actividad Motora/efectos de los fármacos , Tiempo de Reacción/efectos de los fármacos , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Receptores de Dopamina D3/genética
12.
Hum Brain Mapp ; 37(12): 4706-4717, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27489078

RESUMEN

Increasing a participant's ability to prepare for response inhibition is known to result in longer Go response times and is thought to engage a "top-down fronto-striatal inhibitory task set." This premise is supported by the observation of anterior striatum activation in functional magnetic resonance imaging (fMRI) analyses that focus on uncertain versus certain Go trials. It is assumed that setting up a proactive inhibitory task set also influences how participants subsequently implement stopping. To assess this assumption, we aimed to manipulate the degree of proactive inhibition in a modified stop-signal task to see how this manipulation influences activation when reacting to the Stop cue. Specifically, we tested whether there is differential activity of basal ganglia nuclei, namely the subthalamic nucleus (STN) and anterior striatum, on Stop trials when stop-signal probability was relatively low (20%) or high (40%). Successful stopping was associated with increased STN activity when Stop trials were infrequent and increased caudate head activation when Stop trials were more likely, suggesting a different implementation of reactive response inhibition by the basal ganglia for differing degrees of proactive response control. Hum Brain Mapp 37:4706-4717, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Ganglios Basales/fisiología , Actividad Motora/fisiología , Inhibición Proactiva , Ganglios Basales/diagnóstico por imagen , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Tiempo de Reacción , Percepción Visual/fisiología , Adulto Joven
13.
Exp Brain Res ; 234(12): 3669-3676, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27590480

RESUMEN

Aerobic exercise can enhance neuroplasticity although presently the neural mechanisms underpinning these benefits remain unclear. One possible mechanism is through effects on primary motor cortex (M1) function via down-regulation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). The aim of the present study was to examine how corticomotor excitability (CME) and M1 intracortical inhibition are modulated in response to a single bout of moderate intensity aerobic exercise. Ten healthy right-handed adults were participants. Single- and paired-pulse transcranial magnetic stimulation was applied over left M1 to obtain motor-evoked potentials in the right flexor pollicis brevis. We examined CME, cortical silent period (SP) duration, short- and long-interval intracortical inhibition (SICI, LICI), and late cortical disinhibition (LCD), before and after acute aerobic exercise (exercise session) or an equivalent duration without exercise (control session). Aerobic exercise was performed on a cycle ergometer for 30 min at a workload equivalent to 60 % of maximal cardiorespiratory fitness (VO2 peak; heart rate reserve = 75 ± 3 %, perceived exertion = 13.5 ± 0.7). LICI was reduced at 10 (52 ± 17 %, P = 0.03) and 20 min (27 ± 8 %, P = 0.03) post-exercise compared to baseline (13 ± 4 %). No significant changes in CME, SP duration, SICI or LCD were observed. The present study shows that GABAB-mediated intracortical inhibition may be down-regulated after acute aerobic exercise. The potential effects this may have on M1 plasticity remain to be determined.


Asunto(s)
Potenciales Evocados Motores/fisiología , Ejercicio Físico/fisiología , Corteza Motora/fisiología , Inhibición Neural/fisiología , Adolescente , Adulto , Electromiografía , Femenino , Mano/inervación , Humanos , Masculino , Músculo Esquelético/fisiología , Estadísticas no Paramétricas , Estimulación Magnética Transcraneal , Adulto Joven
14.
Cereb Cortex ; 25(7): 1958-69, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24501382

RESUMEN

It has been established that bimanual coordination with augmented feedback (FB) versus no augmented feedback (NFB) is associated with activity in different brain regions. It is unclear however, whether this distinction remains after practice comprising both these conditions. Functional magnetic resonance imaging was used in humans to compare visual FB versus NFB conditions for a bimanual tracking task, and their differential evolution across learning. Scanning occurred before (Pre) and after 2 weeks (Post) of mixed FB and NFB training using an event-related design, allowing differentiation between the planning and execution phase of the task. Activations at the whole-brain level initially differed for FB versus NFB movements but this differentiation diminished with training for the movement execution phase. Specifically, in right dorsal premotor cortex and right dorsolateral prefrontal cortex activation increased for NFB and decreased for FB trials to converge toward the end of practice. This suggests that learning led to a decreased need to adjust the ongoing movement on the basis of FB, whereas online monitoring became more pronounced in NFB trials as discrepancies between the required and the produced motor output were detected more accurately after training, due to a generic internal reference of correctness supporting movement control under varying conditions.


Asunto(s)
Encéfalo/fisiología , Retroalimentación Psicológica/fisiología , Retroalimentación Sensorial/fisiología , Aprendizaje/fisiología , Desempeño Psicomotor/fisiología , Fenómenos Biomecánicos , Mapeo Encefálico , Circulación Cerebrovascular/fisiología , Femenino , Mano/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Oxígeno/sangre , Adulto Joven
15.
Hum Brain Mapp ; 36(4): 1265-77, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25418860

RESUMEN

Recent work has demonstrated that functional connectivity between remote brain regions can be modulated by task learning or the performance of an already well-learned task. Here, we investigated the extent to which initial learning and stable performance of a spatial navigation task modulates functional connectivity between subregions of hippocampus and striatum. Subjects actively navigated through a virtual water maze environment and used visual cues to learn the position of a fixed spatial location. Resting-state functional magnetic resonance imaging scans were collected before and after virtual water maze navigation in two scan sessions conducted 1 week apart, with a behavior-only training session in between. There was a large significant reduction in the time taken to intercept the target location during scan session 1 and a small significant reduction during the behavior-only training session. No further reduction was observed during scan session 2. This indicates that scan session 1 represented initial learning and scan session 2 represented stable performance. We observed an increase in functional connectivity between left posterior hippocampus and left dorsal caudate that was specific to scan session 1. Importantly, the magnitude of the increase in functional connectivity was correlated with offline gains in task performance. Our findings suggest cooperative interaction occurs between posterior hippocampus and dorsal caudate during awake rest following the initial phase of spatial navigation learning. Furthermore, we speculate that the increase in functional connectivity observed during awake rest after initial learning might reflect consolidation-related processing.


Asunto(s)
Núcleo Caudado/fisiología , Hipocampo/fisiología , Aprendizaje por Laberinto/fisiología , Percepción Visual/fisiología , Adulto , Mapeo Encefálico , Señales (Psicología) , Femenino , Lateralidad Funcional , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología , Descanso , Procesamiento de Señales Asistido por Computador , Interfaz Usuario-Computador , Agua , Adulto Joven
16.
J Neurophysiol ; 112(1): 156-64, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24717346

RESUMEN

Motor learning requires practice over a period of time and depends on brain plasticity, yet even for relatively simple movements, there are multiple practice strategies that can be used for skill acquisition. We investigated the role of intracortical inhibition in the primary motor cortex (M1) during motor skill learning. Event-related transcranial magnetic stimulation (TMS) was used to assess corticomotor excitability and inhibition thought to involve synaptic and extrasynaptic γ-aminobutyric acid (GABA). Short intracortical inhibition (SICI) was assessed using 1- and 2.5-ms interstimulus intervals (ISIs). Participants learned a novel, sequential pinch-grip task on a computer in either a repetitive or interleaved practice structure. Both practice structures showed equivalent levels of motor performance at the end of acquisition and at retention 1 wk later. There was a novel task-related modulation of 1-ms SICI. Repetitive practice elicited a greater reduction of 1- and 2.5-ms SICI, i.e., disinhibition, between rest and task acquisition, compared with interleaved practice. These novel findings support the use of a repetitive practice structure for motor learning because the associated effects within M1 have relevance for motor rehabilitation.


Asunto(s)
Aprendizaje , Corteza Motora/fisiología , Destreza Motora , Inhibición Neural , Adulto , Potenciales Evocados Motores , Femenino , Humanos , Masculino , Estimulación Magnética Transcraneal
17.
Hum Brain Mapp ; 35(5): 2459-69, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23913872

RESUMEN

Suppressing and flexibly adapting actions are a critical part of our daily behavioral repertoire. Traumatic brain injury (TBI) patients show clear impairments in this type of action control; however, the underlying mechanisms are poorly understood. Here, we tested whether white matter integrity of cortico-subcortical pathways could account for impairments in task switching, an important component of executive functioning. Twenty young adults with TBI and eighteen controls performed a switching task requiring attention to global versus local stimulus features. Diffusion weighted images were acquired and whole brain tract-based spatial statistics (TBSS) were used to explore where white matter damage was associated with switching impairment. A crossing fiber model and probabilistic tractography further identified the specific fiber populations. Relative to controls, patients with a history of TBI had a higher switch cost and were less accurate. The TBI group showed a widespread decline in fractional anisotropy (FA) throughout the TBSS skeleton. FA in the superior corona radiata showed a negative relationship with switch cost. More specifically, this involved cortico-subcortical loops with the (pre-)supplementary motor area and superior frontal gyrus. These findings provide evidence for damage to frontal-subcortical projections in TBI, which is associated with task switching impairments.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/etiología , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Encéfalo/patología , Red Nerviosa/patología , Adolescente , Adulto , Anisotropía , Imagen de Difusión Tensora , Función Ejecutiva , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Pruebas Neuropsicológicas , Sustancia Blanca/patología , Adulto Joven
18.
NPJ Sci Learn ; 9(1): 9, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368455

RESUMEN

Healthy aging is associated with changes in motor sequence learning, with some studies indicating decline in motor skill learning in older age. Acute cardiorespiratory exercise has emerged as a potential intervention to improve motor learning, however research in healthy older adults is limited. The current study investigated the impact of high-intensity interval exercise (HIIT) on a subsequent sequential motor learning task. Twenty-four older adults (aged 55-75 years) completed either 20-minutes of cycling, or an equivalent period of active rest before practicing a sequential force grip task. Skill learning was assessed during acquisition and at a 6-hour retention test. In contrast to expectation, exercise was associated with reduced accuracy during skill acquisition compared to rest, particularly for the oldest participants. However, improvements in motor skill were retained in the exercise condition, while a reduction in skill was observed following rest. Our findings indicate that high-intensity exercise conducted immediately prior to learning a novel motor skill may have a negative impact on motor performance during learning in older adults. We also demonstrated that exercise may facilitate early offline consolidation of a motor skill within this population, which has implications for motor rehabilitation.

19.
J Neurosci ; 32(24): 8401-12, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22699920

RESUMEN

Diffusion weighted imaging (DWI) studies in humans have shown that seniors exhibit reduced white matter integrity compared with young adults, with the most pronounced change occurring in frontal white matter. It is generally assumed that this structural deterioration underlies inhibitory control deficits in old age, but specific evidence from a structural neuroscience perspective is lacking. Cognitive action control is thought to rely on an interconnected network consisting of right inferior frontal cortex (r-IFC), pre-supplementary motor area (preSMA), and the subthalamic nucleus (STN). Here we performed probabilistic DWI tractography to delineate this cognitive control network and had the same individuals (20 young, 20 older adults) perform a task probing both response inhibition and action reprogramming. We hypothesized that structural integrity (fractional anisotropy) and connection strength within this network would be predictive of individual and age-related differences in task performance. We show that the integrity of r-IFC white matter is an age-independent predictor of stop-signal reaction time (SSRT). We further provide evidence that the integrity of white matter projecting to STN predicts both outright stopping (SSRT) and transient braking of response initiation to buy time for action reprogramming (stopping interference effects). These associations remain even after controlling for Go task performance, demonstrating specificity to the Stop component of this task. Finally, a multiple regression analysis reveals bilateral preSMA-STN tract strength as a significant predictor of SSRT in older adults. Our data link age-related decline in inhibitory control with structural decline of STN projections.


Asunto(s)
Envejecimiento/fisiología , Envejecimiento/psicología , Mapeo Encefálico/psicología , Lóbulo Frontal/fisiología , Inhibición Psicológica , Corteza Motora/fisiología , Desempeño Psicomotor/fisiología , Núcleo Subtalámico/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Anisotropía , Mapeo Encefálico/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/psicología , Femenino , Lóbulo Frontal/patología , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/patología , Fibras Nerviosas Mielínicas/patología , Fibras Nerviosas Mielínicas/fisiología , Vías Nerviosas/patología , Vías Nerviosas/fisiología , Tiempo de Reacción/fisiología , Núcleo Subtalámico/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA