Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 500(7461): 194-8, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23925243

RESUMEN

Ninety per cent of marine organic matter burial occurs in continental margin sediments, where a substantial fraction of organic carbon escapes oxidation and enters long-term geologic storage within sedimentary rocks. In such environments, microbial metabolism is limited by the diffusive supply of electron acceptors. One strategy to optimize energy yields in a resource-limited habitat is symbiotic metabolite exchange among microbial associations. Thermodynamic and geochemical considerations indicate that microbial co-metabolisms are likely to play a critical part in sedimentary organic carbon cycling. Yet only one association, between methanotrophic archaea and sulphate-reducing bacteria, has been demonstrated in marine sediments in situ, and little is known of the role of microbial symbiotic interactions in other sedimentary biogeochemical cycles. Here we report in situ molecular and incubation-based evidence for a novel symbiotic consortium between two chemolithotrophic bacteria--anaerobic ammonium-oxidizing (anammox) bacteria and the nitrate-sequestering sulphur-oxidizing Thioploca species--in anoxic sediments of the Soledad basin at the Mexican Pacific margin. A mass balance of benthic solute fluxes and the corresponding nitrogen isotope composition of nitrate and ammonium fluxes indicate that anammox bacteria rely on Thioploca species for the supply of metabolic substrates and account for about 57 ± 21 per cent of the total benthic N2 production. We show that Thioploca-anammox symbiosis intensifies benthic fixed nitrogen losses in anoxic sediments, bypassing diffusion-imposed limitations by efficiently coupling the carbon, nitrogen and sulphur cycles.


Asunto(s)
Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Nitrógeno/metabolismo , Thiotrichaceae/metabolismo , Anaerobiosis , Bacterias/clasificación , Bacterias/genética , Carbono/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Océano Pacífico , Filogenia , Azufre/metabolismo , Thiotrichaceae/clasificación , Thiotrichaceae/genética
2.
Environ Pollut ; 269: 115945, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33261962

RESUMEN

In Europe, emerging organic compounds (EOCs) in groundwater is a growing research area. Prioritisation for monitoring EOCs in Europe was formalised in 2019 through the development of the first voluntary groundwater watch list (GWWL). Despite this, groundwater occurrence data in the peer reviewed literature for Europe has not been reviewed to date. Questions surrounding the effect, toxicity, movement in the subsurface and unsaturated zone make the process of regulating EOC use difficult. The aim in Europe is to develop a unified strategy for the classification, and prioritisation of EOCs to be monitored in groundwater. This paper compiles evidence from the recent published studies from across Europe, since 2012, when the last major literature global review of EOCs in groundwater took place. A total of 39 studies were identified for review based on specific selection criteria (geography, publication date, sample size>10, inclusion of EOCs data). Data on specific compounds, and associated meta-data, are compiled and reviewed. The two most frequently detected EOCs, carbamazepine and caffeine, occurred in groundwater at concentrations of up to 2.3 and 14.8 µg/L, respectively. The most frequently reported category of compounds were 'Pharmaceuticals'; a highly studied group with 135 compounds identified within 31 of the 39 studies. In Europe, the majority of reviewed studies (23) were at a regional scale, looking specifically at EOCs in a specific city or aquifer. The use of analytical methods is not uniform across Europe, and this inevitably influences the current assessment of EOCs in groundwater. A correlation between the number of compounds analysed for, and the number detected in groundwater highlights the need for further studies, especially larger-scale studies throughout Europe. For the development of EU and national regulation, further work is required to understand the occurrence and impacts of EOCs in groundwater throughout Europe and elsewhere.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Ciudades , Monitoreo del Ambiente , Europa (Continente) , Contaminantes Químicos del Agua/análisis
3.
Biochemistry ; 36(28): 8611-8, 1997 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-9214307

RESUMEN

In order to characterize the native Cys42-sulfenic acid redox center of the flavoprotein NADH peroxidase by NMR, an expression protocol has been developed which yields the [3-13C]Cys42-labeled protein in 100 mg quantities. Difference spectra of the labeled minus unlabeled oxidized enzyme (E) give a peak at 41.3 ppm (relative to dioxane) which represents the Cys42-sulfenic acid. Reduction of labeled E with 1 equiv of NADH gives the air-stable two-electron reduced (EH2) species, and oxidized minus reduced difference spectra give maxima and minima at 41.3 and 30.8 ppm, respectively, corresponding to the Cys42-sulfenic acid and -thiolate species. Peroxide inactivation of E, which has previously been attributed to oxidation of the Cys42-sulfenic acid to the Cys42-sulfinic and/or sulfonic acid states, gives rise to a new maximum in the difference spectrum of Einactive minus E at 57.0 ppm. A similar expression protocol was used to obtain the [ring-2-13C]His-labeled peroxidase HHAA mutant (His10His23Ala87Ala258); the spectral change over the pH range 5.8-7. 8 is attributed to deprotonation of the surface-exposed His23. Furthermore, replacement of Arg303, which is hydrogen bonded to His10, has no effect on the 13C spectrum. These results provide direct evidence in support of the peroxidase Cys42-sulfenic acid/thiol redox cycle and add significantly to our structure-based understanding of protein-sulfenic acid stabilization and function.


Asunto(s)
Cisteína/análogos & derivados , Enterococcus faecalis/enzimología , Peroxidasas/química , Ácidos Sulfénicos/metabolismo , Sitios de Unión , Cisteína/química , Cisteína/metabolismo , Flavoproteínas/química , Flavoproteínas/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Mutagénesis Sitio-Dirigida , NAD/metabolismo , Oxidación-Reducción , Peróxidos/farmacología , Ácidos Sulfénicos/química
4.
Biochemistry ; 35(7): 2380-7, 1996 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-8652580

RESUMEN

In order to test the proposal [Stehle, T., Claiborne, A., & Schulz, G. E. (1993) Eur. J. Biochem. 211, 221-226] that the active-site His10 of NADH peroxidase functions as an essential acid-base catalyst, we have analyzed mutants in which this residue has been replaced by Gln or Ala. The k(cat) values for both H10Q and H10A peroxidases, and the pH profile for k(cat) with H10Q, are very similar to those observed with wild-type peroxidase. Both mutants, however, exhibit K(m)(H2O2) values much higher (50-70-fold) than that for wild-type enzyme, and stopped-flow analysis of the H2O2 reactivity of two-electron reduced H10Q demonstrates that this difference is due to a 150-fold decrease in the second-order rate constant for this reaction with the mutant. Stopped-flow analyses also confirm that reduction of the enzyme by NADH is essentially unaffected by His10 replacement and remains largely rate-limiting in turnover; the formation of an E.NADH intermediate in the conversion of E-->EH2 is confirmed by diode-array spectral analyses with H10A. Both H10Q and H10A mutants, in their oxidized E(FAD, Cys42-sulfenic acid) forms, exhibit enhanced long-wavelength absorbance bands (lambda(max) = 650 nm and 550 nm, respectively), which most likely reflect perturbations in a charge-transfer interaction between the Cys42-sulfenic acid and FAD. Combined with the 50-fold increase in the second-order rate constant for H2O2 inactivation (via Cys42-sulfenic acid oxidation) of the H10Q mutant, these observations support the proposal that His10 functions in part to stabilize the unusual Cys42-sulfenic acid redox center within the active-site environment.


Asunto(s)
Enterococcus/enzimología , Histidina/metabolismo , Peroxidasas/metabolismo , Sitios de Unión , Catálisis , Clonación Molecular , Escherichia coli/genética , Cinética , Oxidación-Reducción , Peroxidasas/antagonistas & inhibidores , Peroxidasas/genética , Análisis Espectral
5.
Biochemistry ; 39(34): 10353-64, 2000 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-10956025

RESUMEN

The crystal structure of the flavoprotein NADH peroxidase shows that the Arg303 side chain forms a hydrogen bond with the active-site His10 imidazole and is therefore likely to influence the catalytic mechanism. Dithionite titration of an R303M mutant [E(FAD, Cys42-sulfenic acid)] yields a two-electron reduced intermediate (EH(2)) with enhanced flavin fluorescence and almost no charge-transfer absorbance at pH 7.0; the pK(a) for the nascent Cys42-SH is increased by over 3.5 units in comparison with the wild-type EH(2) pK(a) of Cys42-SOH. The crystal structure of the R303M peroxidase has been refined at 2.45 A resolution. In addition to eliminating the Arg303 interactions with His10 and Glu14, the mutant exhibits a significant change in the conformation of the Cys42-SOH side chain relative to FAD and His10 in particular. These and other results provide a detailed understanding of Arg303 and its role in the structure and mechanism of this unique flavoprotein peroxidase.


Asunto(s)
Peroxidasas/genética , Peroxidasas/metabolismo , Sustitución de Aminoácidos , Dominio Catalítico/genética , Cristalografía por Rayos X , Técnicas In Vitro , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Peroxidasas/química , Conformación Proteica , Espectrometría de Fluorescencia , Espectrofotometría
6.
Biochemistry ; 34(43): 14114-24, 1995 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-7578008

RESUMEN

Anaerobic titrations of the two-electron-reduced NADH peroxidase (EH2) with NADH and 3-acetylpyridine adenine dinucleotide (AcPyADH) yield the respective complexes without significant formation of the four-electron-reduced enzyme (EH4). Further analysis of the EH2/EH4 redox couple, however, yields a midpoint potential of -312 mV for the free enzyme at pH 7. The catalytic mechanism of the peroxidase has been evaluated with a combination of kinetic and spectroscopic approaches, including initial velocity and enzyme-monitored turnover measurements, anaerobic stopped-flow studies of the reactions of both oxidized enzyme (E) and EH2 with NADH and AcPyADH, and diode-array spectral analyses of both the reduction of E-->EH2 by NADH and the formation of EH2.NADH. Overall, these results are consistent with rapid formation of an E.NADH complex with distinct spectral properties and a rate-limiting hydride transfer step that yields EH2, with no direct evidence for intermediate FADH2 formation. The EH2.NADH complex described previously [Poole, L. B., & Claiborne, A. (1986) J. Biol. Chem. 261, 14525-14533] is not catalytically competent and reacts relatively slowly with H2O2. Stopped-flow analyses do, however, support the very rapid formation of an EH2.NADH* intermediate, with spectral properties that distinguish it from the static EH2.NADH form, and yield a first-order rate constant for the conversion between the two species that is smaller than kcat. The combined rapid-reaction and steady-state data are best accommodated by a limiting type of ternary complex mechanism very similar to that proposed previously [Parsonage, D., Miller, H., Ross, R.P., & Claiborne, A. (1993) J. Biol. Chem. 268, 3161-3167].


Asunto(s)
Enterococcus/enzimología , NAD/metabolismo , Peroxidasas/metabolismo , Catálisis , Coenzimas/química , Coenzimas/metabolismo , Deuterio , Electrones , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Cinética , NAD/análogos & derivados , NAD/química , Oxidación-Reducción , Peroxidasas/química
7.
Biochemistry ; 34(39): 12636-44, 1995 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-7548014

RESUMEN

Reconstitution of apo-pyruvate decarboxylase isozymes (PDC, EC 4.1.1.1) from Saccharomyces carlsbergensis was investigated by determination of the steady-state kinetics of the reaction with thiamin diphosphate (TDP) and Mg2+ in the presence and absence of substrate (pyruvate) or allosteric effector (pyruvamide). Reconstitution of the PDC isozyme mixture and alpha 4 isozyme (alpha 4-PDC) exhibits biphasic kinetics with 52 +/- 11% of the PDC reacting with k1 = (1.0 +/- 0.3) x 10(-2) s-1 and 48 +/- 12% of the PDC reacting with k2 = (1.1 +/- 0.6) x 10(-1) s-1 when TDP (KTDP = 0.5 +/- 0.2 mM) is added to apo-PDC equilibrated with saturating Mg2+. PDC reconstitution exhibits first-order kinetics with k1 = (1.6 +/- 0.5) x 10(-2) s-1 upon addition of Mg2+ (KMg2+ = 0.2 +/- 0.1 mM) to apo-PDC equilibrated with saturating TDP. Biphasic kinetics for the PDC isozymes provides evidence that apo-PDC reconstitution with TDP and Mg2+ involves two pathways, TDP binding followed by Mg2+ (k1) or Mg2+ binding followed by TDP (k2). This is supported by a change in reconstitution pathway with the order of cofactor addition and is inconsistent with a single pathway involving ordered binding of the metal ion followed by TDP. The presence of pyruvamide has no significant effect on the rate constants for apo-PDC reconstitution and favors the k2 pathway; pyruvate decreases the value of k2 < or = 3-fold and has no effect on the value of k1.(ABSTRACT TRUNCATED AT 250 WORDS)


Asunto(s)
Isoenzimas/química , Magnesio/química , Piruvato Descarboxilasa/química , Saccharomyces cerevisiae/enzimología , Tiamina Pirofosfato/química , Cinética
8.
Biochemistry ; 38(47): 15407-16, 1999 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-10569923

RESUMEN

While it has been known for more than 20 years that unusually stable cysteine-sulfenic acid (Cys-SOH) derivatives can be introduced in selected proteins by mild oxidation, only recently have chemical and crystallographic evidence for functional Cys-SOH been presented with native proteins such as NADH peroxidase and NADH oxidase, nitrile hydratase, and the hORF6 and AhpC peroxiredoxins. In addition, Cys-SOH forms of protein tyrosine phosphatases and glutathione reductase have been suggested to play key roles in the reversible inhibition of these enzymes during tyrosine phosphorylation-dependent signal transduction events and nitrosative stress, respectively. Substantial chemical data have also been presented which implicate Cys-SOH in redox regulation of transcription factors such as Fos and Jun (activator protein-1) and bovine papillomavirus-1 E2 protein. Functionally, the Cys-SOHs in NADH peroxidase, NADH oxidase, and the peroxiredoxins serve as either catalytically essential redox centers or transient intermediates during peroxide reduction. In nitrile hydratase, the active-site Cys-SOH functions in both iron coordination and NO binding but does not play any catalytic redox role. In Fos and Jun and the E2 protein, on the other hand, a key Cys-SH serves as a sensor for intracellular redox status; reversible oxidation to Cys-SOH as proposed inhibits the corresponding DNA binding activity. These functional Cys-SOHs have roles in diverse cellular processes, including signal transduction, oxygen metabolism and the oxidative stress response, and transcriptional regulation, as well as in the industrial production of acrylamide, and their detailed analyses are beginning to provide the chemical foundation necessary for understanding protein-SOH stabilization and function.


Asunto(s)
Cisteína/análogos & derivados , Enzimas/química , Enzimas/metabolismo , Ácidos Sulfénicos/química , Ácidos Sulfénicos/metabolismo , Animales , Catálisis , Cisteína/química , Cisteína/metabolismo , Humanos , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/metabolismo , Oxidación-Reducción , Peroxidasas/química , Peroxidasas/metabolismo , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo
9.
Eur J Biochem ; 268(22): 5816-23, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11722568

RESUMEN

A wealth of H(2)O-producing NADH oxidase (NOX) homologues have been discovered in the genomes of the hyperthermophilic Archaea, including two homologues in the genome of Pyrococcus furiosus which have been designated as NOX1 and NOX2. In order to investigate the function of NOX1, the structural gene encoding NOX1 was cloned from the genome of P. furiosus and expressed in Escherichia coli, and the resulting recombinant enzyme (rNOX1) was purified to homogeneity. The enzyme is a thermostable flavoprotein that can be reconstituted only with FAD. rNOX1 catalyzes the oxidation of NADH, producing both H(2)O(2) and H(2)O as reduction products of O(2) (O(2) + 1-2NADH + 1-2H(+) --> 1-2NAD(+) + H(2)O(2) or 2H(2)O). To our knowledge, this is the first NADH oxidase found to produce both H(2)O(2) and H(2)O. The enzyme exhibits a low K(m) for NADH (< 4 microm), and shows little or no reaction with NADPH. Transcriptional analyses demonstrated that NOX1 is constitutively expressed regardless of the carbon source and a single promoter was identified 25 bp upstream of the nox1 gene by primer extension. Although P. furiosus is a strict anaerobe, it may tolerate oxygen to some extent and we anticipate NOX1 to be involved in the response to oxygen at high temperatures.


Asunto(s)
Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Pyrococcus furiosus/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN de Archaea , Estabilidad de Enzimas , Peróxido de Hidrógeno/metabolismo , Cinética , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/genética , Estrés Oxidativo , Peroxidasas/metabolismo , Homología de Secuencia de Aminoácido , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA