Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nucleic Acids Res ; 46(13): 6401-6415, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29961805

RESUMEN

Natural and lab-evolved proteins often recognize their RNA partners with exquisite affinity. Structural analysis of such complexes can offer valuable insight into sequence-selective recognition that can be exploited to alter biological function. Here, we describe the structure of a lab-evolved RNA recognition motif (RRM) bound to the HIV-1 trans-activation response (TAR) RNA element at 1.80 Å-resolution. The complex reveals a trio of arginines in an evolved ß2-ß3 loop penetrating deeply into the major groove to read conserved guanines while simultaneously forming cation-π and salt-bridge contacts. The observation that the evolved RRM engages TAR within a double-stranded stem is atypical compared to most RRMs. Mutagenesis, thermodynamic analysis and molecular dynamics validate the atypical binding mode and quantify molecular contributions that support the exceptionally tight binding of the TAR-protein complex (KD,App of 2.5 ± 0.1 nM). These findings led to the hypothesis that the ß2-ß3 loop can function as a standalone TAR-recognition module. Indeed, short constrained peptides comprising the ß2-ß3 loop still bind TAR (KD,App of 1.8 ± 0.5 µM) and significantly weaken TAR-dependent transcription. Our results provide a detailed understanding of TAR molecular recognition and reveal that a lab-evolved protein can be reduced to a minimal RNA-binding peptide.


Asunto(s)
Duplicado del Terminal Largo de VIH , Oligopéptidos/química , Motivo de Reconocimiento de ARN , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN Recombinante/genética , Ensayo de Inmunoadsorción Enzimática , Escherichia coli , Genes Sintéticos , VIH-1/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Mutación Puntual , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , ARN Bicatenario/química , Alineación de Secuencia , Especificidad por Sustrato , Activación Transcripcional
2.
Protein Sci ; 33(4): e4919, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501433

RESUMEN

Protein-protein interactions (PPIs) are central to many cellular processes, and the identification of novel PPIs is a critical step in the discovery of protein therapeutics. Simple methods to identify naturally existing or laboratory evolved PPIs are therefore valuable research tools. We have developed a facile selection that links PPI-dependent ß-lactamase recruitment on the surface of Escherichia coli with resistance to ampicillin. Bacteria displaying a protein that forms a complex with a specific protein-ß-lactamase fusion are protected from ampicillin-dependent cell death. In contrast, bacteria that do not recruit ß-lactamase to the cell surface are killed by ampicillin. Given its simplicity and tunability, we anticipate this selection will be a valuable addition to the palette of methods for illuminating and interrogating PPIs.


Asunto(s)
Ampicilina , beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Ampicilina/farmacología , Ampicilina/metabolismo , Bacterias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Membrana Celular/metabolismo , Antibacterianos/metabolismo
3.
Sci Rep ; 11(1): 5746, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707493

RESUMEN

The skin is a barrier and part of the immune system that protects us from harmful bacteria. Because indwelling medical devices break this barrier, they greatly increase the risk of infection by microbial pathogens. To study how these infections can be prevented through improved clinical practices and medical device technology, it is important to have preclinical models that replicate the early stages of microbial contamination, ingress, and colonization leading up to infection. At present, there are no preclinical ex vivo models specifically developed to simulate conditions for indwelling medical devices. Translocation of pathogens from outside the body across broken skin to normally sterile internal compartments is a rate-limiting step in infectious pathogenesis. In this work, we report a sensitive and reproducible ex vivo porcine skin-catheter model to test how long antimicrobial interventions can delay translocation. Skin preparation was first optimized to minimize tissue damage. The presence of skin dramatically decreased bacterial migration time across the polyurethane catheter interface from > 96 h to 12 h. Using visual colony detection, fluorescence, a luminescent in vitro imaging system, and confocal microscopy, the model was used to quantify time-dependent differences in translocation for eluting and non-eluting antimicrobial catheters. The results show the importance of including tissue in preclinical biofilm models and help to explain current gaps between in vitro testing and clinical outcomes for antimicrobial devices.


Asunto(s)
Traslocación Bacteriana , Modelos Biológicos , Piel/microbiología , Animales , Biopelículas/crecimiento & desarrollo , Catéteres de Permanencia/microbiología , Escherichia coli/crecimiento & desarrollo , Escherichia coli/fisiología , Luminiscencia , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Porcinos , Proteína Fluorescente Roja
4.
Commun Biol ; 4(1): 7, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469147

RESUMEN

Antimicrobial resistance threatens the viability of modern medicine, which is largely dependent on the successful prevention and treatment of bacterial infections. Unfortunately, there are few new therapeutics in the clinical pipeline, particularly for Gram-negative bacteria. We now present a detailed evaluation of the antimicrobial activity of cannabidiol, the main non-psychoactive component of cannabis. We confirm previous reports of Gram-positive activity and expand the breadth of pathogens tested, including highly resistant Staphylococcus aureus, Streptococcus pneumoniae, and Clostridioides difficile. Our results demonstrate that cannabidiol has excellent activity against biofilms, little propensity to induce resistance, and topical in vivo efficacy. Multiple mode-of-action studies point to membrane disruption as cannabidiol's primary mechanism. More importantly, we now report for the first time that cannabidiol can selectively kill a subset of Gram-negative bacteria that includes the 'urgent threat' pathogen Neisseria gonorrhoeae. Structure-activity relationship studies demonstrate the potential to advance cannabidiol analogs as a much-needed new class of antibiotics.


Asunto(s)
Antibacterianos/farmacología , Cannabidiol/análogos & derivados , Cannabidiol/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Animales , Antibacterianos/química , Cannabidiol/química , Cannabidiol/toxicidad , Clostridioides difficile/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Femenino , Células HEK293 , Hemólisis/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones Endogámicos , Pruebas de Sensibilidad Microbiana , Neisseria gonorrhoeae/efectos de los fármacos , Enfermedades Cutáneas Bacterianas/tratamiento farmacológico , Enfermedades Cutáneas Bacterianas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Relación Estructura-Actividad
5.
ACS Chem Biol ; 11(8): 2206-15, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27253715

RESUMEN

Potent and selective recognition and modulation of disease-relevant RNAs remain a daunting challenge. We previously examined the utility of the U1A N-terminal RNA recognition motif as a scaffold for tailoring new RNA hairpin recognition and showed that as few as one or two mutations can result in moderate affinity (low µM dissociation constant) for the human immunodeficiency virus (HIV) trans-activation response element (TAR) RNA, an RNA hairpin controlling transcription of the human immunodeficiency virus (HIV) genome. Here, we use yeast display and saturation mutagenesis of established RNA-binding regions in U1A to identify new synthetic proteins that potently and selectively bind TAR RNA. Our best candidate has truly altered, not simply broadened, RNA-binding selectivity; it binds TAR with subnanomolar affinity (apparent dissociation constant of ∼0.5 nM) but does not appreciably bind the original U1A RNA target (U1hpII). It specifically recognizes the TAR RNA hairpin in the context of the HIV-1 5'-untranslated region, inhibits the interaction between TAR RNA and an HIV trans-activator of transcription (Tat)-derived peptide, and suppresses Tat/TAR-dependent transcription. Proteins described in this work are among the tightest TAR RNA-binding reagents-small molecule, nucleic acid, or protein-reported to date and thus have potential utility as therapeutics and basic research tools. Moreover, our findings demonstrate how a naturally occurring RNA recognition motif can be dramatically resurfaced through mutation, leading to potent and selective recognition-and modulation-of disease-relevant RNA.


Asunto(s)
Proteínas Nucleares/genética , Motivo de Reconocimiento de ARN , Proteínas de Unión al ARN/genética , Transcripción Genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Regiones no Traducidas 5' , VIH-1/genética , Conformación de Ácido Nucleico , Saccharomyces cerevisiae/genética , Resonancia por Plasmón de Superficie
6.
J Phycol ; 47(2): 302-12, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27021862

RESUMEN

We investigated the effect of Zn availability on growth rate (µ), cell morphology, and elemental stoichiometry and incorporation rate in two marine diatoms. For the coastal diatom Skeletonema costatum (Grev.) Cleve, the half-saturation constant (KS ) for growth was 4.1 pM Zn(2+) , and growth ceased at ≤ 2.6 pM Zn(2+) , whereas for the oceanic diatom Thalassiosira oceanica Hasle, KS was 0.5 pM Zn(2+) , and µ remained at ∼40%µmax even at 0.3 pM Zn(2+) . Under Zn-limiting (Zn-L) conditions, S. costatum decreased cell size significantly, leading to an 80% increase in surface area to volume ratio (SA/V) at Zn(2+) of 3.5 pM compared to Zn-replete (Zn-R) conditions (at Zn(2+) of 13.2 pM), whereas T. oceanica's morphology did not change appreciably. Cell quotas of C, N, P, Si, and chl a significantly decreased under Zn limitation in S. costatum (at Zn(2+) of 3.5 pM), whereas Zn limitation in T. oceanica (at Zn(2+) of 0.3 pM) had little effect on quotas. Elemental stoichiometry was ∼85C:10N:9Si:1P and 81C:9N:5Si:1P for S. costatum, and 66C:5N:2Si:1P and 52C:6N:2Si:1P for T. oceanica, under Zn-R and Zn-L conditions, respectively. Incorporation rates of all elements were significantly reduced under Zn limitation for both diatoms, but particularly for Si in S. costatum, and for C in T. oceanica, despite its apparent tolerance of low Zn conditions. With [Zn(2+) ] in some parts of the ocean being of the same order (∼0.2 to 2 pM) as our low Zn conditions for T. oceanica, our results support the hypothesis that in situ growth and C acquisition may be limited by Zn in some oceanic species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA