Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891812

RESUMEN

Organophosphoate (OP) chemicals are known to inhibit the enzyme acetylcholinesterase (AChE). Studying OP poisoning is difficult because common small animal research models have serum carboxylesterase, which contributes to animals' resistance to OP poisoning. Historically, guinea pigs have been used for this research; however, a novel genetically modified mouse strain (KIKO) was developed with nonfunctional serum carboxylase (Es1 KO) and an altered acetylcholinesterase (AChE) gene, which expresses the amino acid sequence of the human form of the same protein (AChE KI). KIKO mice were injected with 1xLD50 of an OP nerve agent or vehicle control with or without atropine. After one to three minutes, animals were injected with 35 mg/kg of the currently fielded Reactivator countermeasure for OP poisoning. Postmortem brains were imaged on a Bruker RapifleX ToF/ToF instrument. Data confirmed the presence of increased acetylcholine in OP-exposed animals, regardless of treatment or atropine status. More interestingly, we detected a small amount of Reactivator within the brain of both exposed and unexposed animals; it is currently debated if reactivators can cross the blood-brain barrier. Further, we were able to simultaneously image acetylcholine, the primary affected neurotransmitter, as well as determine the location of both Reactivator and acetylcholine in the brain. This study, which utilized sensitive MALDI-MSI methods, characterized KIKO mice as a functional model for OP countermeasure development.


Asunto(s)
Acetilcolinesterasa , Modelos Animales de Enfermedad , Intoxicación por Organofosfatos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Ratones , Humanos , Acetilcolinesterasa/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Atropina/farmacología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos , Ratones Noqueados , Inhibidores de la Colinesterasa , Acetilcolina/metabolismo
2.
Conserv Physiol ; 12(1): coae047, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086758

RESUMEN

Anthropogenic structures in freshwater systems pose a significant threat by fragmenting habitats. Effective fish passage solutions must consider how environmental changes introduce variability into swimming performance. As temperature is considered the most important external factor influencing fish physiology, it is especially important to consider its effects on fish swimming performance. Even minor alterations in water properties, such as temperature and velocity, can profoundly affect fish metabolic demands, foraging behaviours, fitness and, consequently, swimming performance and passage success. In this study, we investigated the impact of varying water temperatures on the critical swimming speeds of four migratory New Zealand species. Our findings revealed a significant reduction in critical swimming speeds at higher water temperatures (26°C) compared to lower ones (8 and 15°C) for three out of four species (Galaxias maculatus, Galaxias brevipinnis and Gobiomorphus cotidianus). In contrast, Galaxias fasciatus exhibited no significant temperature-related changes in swimming performance, suggesting species-specific responses to temperature. The cold temperature treatment did not impact swimming performance for any of the studied species. As high water temperatures significantly reduce fish swimming performance, it is important to ensure that fish passage solutions are designed to accommodate a range of temperature changes, including spatial and temporal changes, ranging from diel to decadal fluctuations. Our research underscores the importance of incorporating temperature effects into fish passage models for habitat restoration, connectivity initiatives, and freshwater fish conservation. The influence of temperature on fish swimming performance can alter migration patterns and population dynamics, highlighting the need for adaptive conservation strategies. To ensure the resilience of freshwater ecosystems it is important to account for the impact of temperature on fish swimming performance, particularly in the context of a changing climate.

3.
Cardiovasc Res ; 120(6): 596-611, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38198753

RESUMEN

AIMS: A mechanistic link between depression and risk of arrhythmias could be attributed to altered catecholamine metabolism in the heart. Monoamine oxidase-A (MAO-A), a key enzyme involved in catecholamine metabolism and longstanding antidepressant target, is highly expressed in the myocardium. The present study aimed to elucidate the functional significance and underlying mechanisms of cardiac MAO-A in arrhythmogenesis. METHODS AND RESULTS: Analysis of the TriNetX database revealed that depressed patients treated with MAO inhibitors had a lower risk of arrhythmias compared with those treated with selective serotonin reuptake inhibitors. This effect was phenocopied in mice with cardiomyocyte-specific MAO-A deficiency (cMAO-Adef), which showed a significant reduction in both incidence and duration of catecholamine stress-induced ventricular tachycardia compared with wild-type mice. Additionally, cMAO-Adef cardiomyocytes exhibited altered Ca2+ handling under catecholamine stimulation, with increased diastolic Ca2+ reuptake, reduced diastolic Ca2+ leak, and diminished systolic Ca2+ release. Mechanistically, cMAO-Adef hearts had reduced catecholamine levels under sympathetic stress, along with reduced levels of reactive oxygen species and protein carbonylation, leading to decreased oxidation of Type II PKA and CaMKII. These changes potentiated phospholamban (PLB) phosphorylation, thereby enhancing diastolic Ca2+ reuptake, while reducing ryanodine receptor 2 (RyR2) phosphorylation to decrease diastolic Ca2+ leak. Consequently, cMAO-Adef hearts exhibited lower diastolic Ca2+ levels and fewer arrhythmogenic Ca2+ waves during sympathetic overstimulation. CONCLUSION: Cardiac MAO-A inhibition exerts an anti-arrhythmic effect by enhancing diastolic Ca2+ handling under catecholamine stress.


Asunto(s)
Calcio , Catecolaminas , Monoaminooxidasa , Taquicardia Ventricular , Animales , Femenino , Humanos , Masculino , Ratones , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Catecolaminas/metabolismo , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Diástole/efectos de los fármacos , Modelos Animales de Enfermedad , Frecuencia Cardíaca/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/enzimología , Taquicardia Ventricular/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA