Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Neurosci ; 41(12): 2630-2644, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33536198

RESUMEN

Neuronal activity has been identified as a key regulator of neuronal network development, but the impact of activity on migration and terminal positioning of interneuron subtypes is poorly understood. The absence of early subpopulation markers and the presence of intermingled migratory and postmigratory neurons make the developing cerebral cortex a difficult model to answer these questions. Postnatal neurogenesis in the subventricular zone (SVZ) offers a more accessible and compartmentalized model. Neural stem cells regionalized along the border of the lateral ventricle produce two main subtypes of neural progenitors, granule cells and periglomerular neurons that migrate tangentially in the rostral migratory stream (RMS) before migrating radially in the olfactory bulb (OB) layers. Here, we used targeted postnatal electroporation to compare the migration of these two populations in male and female mice. We do not observe any obvious differences regarding the mode of tangential or radial migration between these two subtypes. However, we find a striking increase of intrinsic calcium activity in granule cell precursors (GC-Ps) when they switch from tangential to radial migration. By decreasing neuronal excitability in GC-Ps, we find that neuronal activity has little effect on migration but is required for normal positioning and survival of GC-Ps in the OB layers. Strikingly, decreasing activity of periglomerular neuron precursors (PGN-Ps) did not impact their positioning or survival. Altogether these findings suggest that neuronal excitability plays a subtype specific role during the late stage of migration of postnatally born OB interneurons.SIGNIFICANCE STATEMENT While neuronal activity is a critical factor regulating different aspects of neurogenesis, it has been challenging to study its role during the migration of different neuronal subpopulations. Here, we use postnatal targeted electroporation to label and manipulate the two main olfactory bulb (OB) interneuron subpopulations during their migration: granule cell and periglomerular neuron precursors (PGN-Ps). We find a very striking increase of calcium activity only in granule cell precursors (GC-Ps) when they switch from tangential to radial migration. Interestingly, blocking activity in GC-Ps affected mainly their positioning and survival while PGN-Ps were not affected. These results suggest that neuronal activity is required specifically for the recruitment of GC-Ps in the OB layers.


Asunto(s)
Movimiento Celular/fisiología , Interneuronas/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Animales , Animales Recién Nacidos , Femenino , Masculino , Ratones , Ratones Transgénicos , Imagen Molecular/métodos , Técnicas de Cultivo de Órganos
2.
Mol Psychiatry ; 26(11): 6125-6148, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34188164

RESUMEN

While the transcription factor NEUROD2 has recently been associated with epilepsy, its precise role during nervous system development remains unclear. Using a multi-scale approach, we set out to understand how Neurod2 deletion affects the development of the cerebral cortex in mice. In Neurod2 KO embryos, cortical projection neurons over-migrated, thereby altering the final size and position of layers. In juvenile and adults, spine density and turnover were dysregulated in apical but not basal compartments in layer 5 neurons. Patch-clamp recordings in layer 5 neurons of juvenile mice revealed increased intrinsic excitability. Bulk RNA sequencing showed dysregulated expression of many genes associated with neuronal excitability and synaptic function, whose human orthologs were strongly associated with autism spectrum disorders (ASD). At the behavior level, Neurod2 KO mice displayed social interaction deficits, stereotypies, hyperactivity, and occasionally spontaneous seizures. Mice heterozygous for Neurod2 had similar defects, indicating that Neurod2 is haploinsufficient. Finally, specific deletion of Neurod2 in forebrain excitatory neurons recapitulated cellular and behavioral phenotypes found in constitutive KO mice, revealing the region-specific contribution of dysfunctional Neurod2 in symptoms. Informed by these neurobehavioral features in mouse mutants, we identified eleven patients from eight families with a neurodevelopmental disorder including intellectual disability and ASD associated with NEUROD2 pathogenic mutations. Our findings demonstrate crucial roles for Neurod2 in neocortical development, whose alterations can cause neurodevelopmental disorders including intellectual disability and ASD.


Asunto(s)
Trastorno Autístico , Neuropéptidos , Animales , Trastorno Autístico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Corteza Cerebral/metabolismo , Humanos , Ratones , Neuronas/metabolismo , Neuropéptidos/metabolismo , Prosencéfalo/metabolismo , Factores de Transcripción/metabolismo
3.
Development ; 144(21): 3968-3977, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28982684

RESUMEN

In vivo brain electroporation of DNA expression vectors is a widely used method for lineage and gene function studies in the developing and postnatal brain. However, transfection efficiency of DNA is limited and adult brain tissue is refractory to electroporation. Here, we present a systematic study of mRNA as a vector for acute genetic manipulation in the developing and adult brain. We demonstrate that mRNA electroporation is far more efficient than DNA electroporation, and leads to faster and more homogeneous protein expression in vivo Importantly, mRNA electroporation allows the manipulation of neural stem cells and postmitotic neurons in the adult brain using minimally invasive procedures. Finally, we show that this approach can be efficiently used for functional studies, as exemplified by transient overexpression of the neurogenic factor Myt1l and by stably inactivating Dicer nuclease in vivo in adult born olfactory bulb interneurons and in fully integrated cortical projection neurons.


Asunto(s)
Diferenciación Celular , Electroporación/métodos , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Transfección/métodos , Animales , Animales Recién Nacidos , Compartimento Celular , Diferenciación Celular/genética , Femenino , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/metabolismo , Masculino , Ratones , Células-Madre Neurales/citología , Neuronas/citología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Recombinación Genética , Factores de Tiempo , Transgenes
4.
J Neurosci ; 37(44): 10611-10623, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28972122

RESUMEN

In the postnatal forebrain regionalized neural stem cells along the ventricular walls produce olfactory bulb (OB) interneurons with varying neurotransmitter phenotypes and positions. To understand the molecular basis of this region-specific variability we analyzed gene expression in the postnatal dorsal and lateral lineages in mice of both sexes from stem cells to neurons. We show that both lineages maintain transcription factor signatures of their embryonic site of origin, the pallium and subpallium. However, additional factors, including Zic1 and Zic2, are postnatally expressed in the dorsal stem cell compartment and maintained in the lineage that generates calretinin-positive GABAergic neurons for the OB. Functionally, we show that Zic1 and Zic2 induce the generation of calretinin-positive neurons while suppressing dopaminergic fate in the postnatal dorsal lineage. We investigated the evolutionary conservation of the dopaminergic repressor function of Zic proteins and show that it is already present in C. elegansSIGNIFICANCE STATEMENT The vertebrate brain generates thousands of different neuron types. In this work we investigate the molecular mechanisms underlying this variability. Using a genomics approach we identify the transcription factor signatures of defined neural stem cells and neuron populations. Based thereon we show that two related transcription factors, Zic1 and Zic2, are essential to control the balance between two defined neuron types in the postnatal brain. We show that this mechanism is conserved in evolutionary very distant species.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Prosencéfalo/metabolismo , Factores de Transcripción/biosíntesis , Animales , Animales Recién Nacidos , Caenorhabditis elegans , Femenino , Masculino , Ratones , Prosencéfalo/citología , Prosencéfalo/crecimiento & desarrollo , Especificidad de la Especie
5.
Glia ; 65(6): 990-1004, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28317180

RESUMEN

Astrocytes are the most abundant cell type of the central nervous system and cover a broad range of functionalities. We report here the generation of a novel monoclonal antibody, anti-astrocyte cell surface antigen-2 (Anti-ACSA-2). Flow cytometry, immunohistochemistry and immunocytochemistry revealed that Anti-ACSA-2 reacted specifically with a not yet identified glycosylated surface molecule of murine astrocytes at all developmental stages. It did not show any labeling of non-astroglial cells such as neurons, oligodendrocytes, NG2+ cells, microglia, endothelial cells, leukocytes, or erythrocytes. Co-labeling studies of GLAST and ACSA-2 showed largely overlapping expression. However, there were also notable differences in protein expression levels and frequencies of single-positive subpopulations of cells in some regions of the CNS such as cerebellum, most prominently at early postnatal stages. In the neurogenic niches, the dentate gyrus of the hippocampus and the subventricular zone (SVZ), again a general overlap with slight differences in expression levels were observed. ACSA-2 was unlike GLAST not sensitive to papain-based tissue dissociation and allowed for a highly effective, acute, specific, and prospective purification of viable astrocytes based on a new rapid sorting procedure using Anti-ACSA-2 directly coupled to superparamagnetic MicroBeads. In conclusion, ACSA-2 appears to be a new surface marker for astrocytes, radial glia, neural stem cells and bipotent glial progenitor cells which opens up the possibility of further dissecting the characteristics of astroglial subpopulations and lineages.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos de Superficie/análisis , Antígenos de Superficie/inmunología , Astrocitos/citología , Astrocitos/inmunología , Separación Inmunomagnética/métodos , Animales , Animales Recién Nacidos , Especificidad de Anticuerpos , Antígenos de Superficie/metabolismo , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/inmunología , Eritrocitos/citología , Eritrocitos/metabolismo , Transportador 1 de Aminoácidos Excitadores/análisis , Leucocitos/citología , Leucocitos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/citología , Microglía/inmunología , Células-Madre Neurales/inmunología , Neuronas/citología , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/inmunología , Ratas Wistar
7.
Proc Natl Acad Sci U S A ; 111(30): E3129-38, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25024228

RESUMEN

In the nervous system, cilia dysfunction perturbs the circulation of the cerebrospinal fluid, thus affecting neurogenesis and brain homeostasis. A role for planar cell polarity (PCP) signaling in the orientation of cilia (rotational polarity) and ciliogenesis is established. However, whether and how PCP regulates cilia positioning in the apical domain (translational polarity) in radial progenitors and ependymal cells remain unclear. By analysis of a large panel of mutant mice, we show that two PCP signals are operating in ciliated cells. The first signal, controlled by cadherin, EGF-like, laminin G-like, seven-pass, G-type receptor (Celsr) 2, Celsr3, Frizzled3 (Fzd3) and Van Gogh like2 (Vangl2) organizes multicilia in individual cells (single-cell polarity), whereas the second signal, governed by Celsr1, Fzd3, and Vangl2, coordinates polarity between cells in both radial progenitors and ependymal cells (tissue polarity). Loss of either of these signals is associated with specific defects in the cytoskeleton. Our data reveal unreported functions of PCP and provide an integrated view of planar polarization of the brain ciliated cells.


Asunto(s)
Polaridad Celular/fisiología , Citoesqueleto/metabolismo , Epéndimo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Transducción de Señal/fisiología , Animales , Cilios/genética , Cilios/metabolismo , Citoesqueleto/genética , Epéndimo/citología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética
8.
J Neurosci ; 34(24): 8318-23, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24920634

RESUMEN

The heparan sulfate proteoglycan Glypican 4 (Gpc4) is strongly expressed in mouse embryonic stem (ES) cells where it controls the maintenance of self-renewal by modulating Wnt/ß-catenin signaling activities. Here we show that mouse ES cells carrying a hypomorphic Gpc4 allele, in a single-step neuronal differentiation protocol, show increased differentiation into dopaminergic neurons expressing tyrosine hydroxylase (TH) and nuclear receptor related-1 protein (Nurr1) 1. In contrast to wild-type cells, these differentiating Gpc4-mutant cells expressed high levels of DOPA decarboxylase and the dopamine transporter, two markers expressed by fully mature dopaminergic neurons. Intrastriatal transplantation of Gpc4 hypomorphic cells into a 6-OHDA rat model for Parkinson's disease improved motor behavior in the cylinder test and amphetamine-induced rotations at a higher level than transplanted wild-type cells. Importantly, Gpc4 hypomorphic cell grafts, in contrast to wild-type cells, did not generate teratomas in the host brains, leading to strongly enhanced animal survival. Therefore, control of Gpc4 activity level represents a new potential strategy to reduce ES cell tumorigenic features while at the same time increasing neuronal differentiation and integration.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Células Madre Embrionarias/trasplante , Glipicanos/metabolismo , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/cirugía , Teratoma/prevención & control , Animales , Calbindinas/metabolismo , Recuento de Células , Diferenciación Celular , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Glipicanos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Humanos , Ratones , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Ratas , Receptores de Dopamina D2/metabolismo , Recuperación de la Función/fisiología , Teratoma/etiología , Tirosina 3-Monooxigenasa/metabolismo
9.
J Neurosci ; 32(47): 16892-905, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23175841

RESUMEN

In the postnatal forebrain, the subventricular zone (SVZ) contains a pool of undifferentiated cells, which proliferate and migrate along the rostral migratory stream (RMS) to the olfactory bulb and differentiate into granule cells and periglomerular cells. Plexin-B2 is a semaphorin receptor previously known to act on neuronal proliferation in the embryonic brain and neuronal migration in the cerebellum. We show here that, in the postnatal and adult CNS, Plexin-B2 is expressed in the subventricular zone lining the telencephalic ventricles and in the rostral migratory stream. We analyzed Plxnb2(-/-) mice and found that there is a marked reduction in the proliferation of SVZ cells in the mutant. Plexin-B2 expression is downregulated in the olfactory bulb as interneurons initiate radial migration. BrdU labeling and GFP electroporation into postnatal SVZ, in addition to time-lapse videomicroscopy, revealed that neuroblasts deficient for Plexin-B2 migrate faster than control ones and leave the RMS more rapidly. Overall, these results show that Plexin-B2 plays a role in postnatal neurogenesis and in the migration of SVZ-derived neuroblasts.


Asunto(s)
Movimiento Celular/fisiología , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Prosencéfalo/fisiología , Animales , Antimetabolitos , Trasplante de Tejido Encefálico , Bromodesoxiuridina , Movimiento Celular/genética , Electroporación , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Factor de Crecimiento de Hepatocito/fisiología , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Ratones Noqueados , Mutación/fisiología , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Bulbo Olfatorio/fisiología , Prosencéfalo/citología
10.
J Neurosci ; 32(11): 3759-64, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22423096

RESUMEN

In the adult forebrain, new interneurons are continuously generated and integrated into the existing circuitry of the olfactory bulb (OB). In an attempt to identify signals that regulate this synaptic integration process, we found strong expression of agrin in adult generated neuronal precursors that arrive in the olfactory bulb after their generation in the subventricular zone. While the agrin receptor components MuSK and Lrp4 were below detection level in neuron populations that represent synaptic targets for the new interneurons, the alternative receptor α3-Na(+)K(+)-ATPase was strongly expressed in mitral cells. Using a transplantation approach, we demonstrate that agrin-deficient interneuron precursors migrate correctly into the OB. However, in contrast to wild-type neurons, which form synapses and survive for prolonged periods, mutant neurons do not mature and are rapidly eliminated. Using in vivo brain electroporation of the olfactory system, we show that the transmembrane form of agrin alone is sufficient to mediate integration and demonstrate that excess transmembrane agrin increases the number of dendritic spines. Last, we provide in vivo evidence that an interaction between agrin and α3-Na(+)K(+)-ATPase is of functional importance in this system.


Asunto(s)
Agrina/fisiología , Neurogénesis/fisiología , Neuronas/metabolismo , Bulbo Olfatorio/metabolismo , Transducción de Señal/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Factores de Edad , Agrina/biosíntesis , Agrina/deficiencia , Animales , Células Cultivadas , Femenino , Regulación Enzimológica de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/enzimología , Bulbo Olfatorio/enzimología , Bulbo Olfatorio/crecimiento & desarrollo , Transducción de Señal/genética , ATPasa Intercambiadora de Sodio-Potasio/biosíntesis , Sinapsis/genética
11.
Stem Cells ; 30(9): 1863-74, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22761013

RESUMEN

Self-renewal and differentiation of stem cell depend on a dynamic interplay of cell-extrinsic and -intrinsic regulators. However, how stem cells perceive the right amount of signal and at the right time to undergo a precise developmental program remains poorly understood. The cell surface proteins Glypicans act as gatekeepers of environmental signals to modulate their perception by target cells. Here, we show that one of these, Glypican4 (Gpc4), is specifically required to maintain the self-renewal potential of mouse embryonic stem cells (ESCs) and to fine tune cell lineage commitment. Notably, Gpc4-mutant ESCs contribute to all embryonic cell lineages when injected in blastocyts but lose their intrinsic tumorigenic properties after implantation into nude mice. Therefore, our molecular and functional studies reveal that Gpc4 maintains distinct stemness features. Moreover, we provide evidence that self-renewal and lineage commitment of different stem cell types is fine tuned by Gpc4 activity by showing that Gpc4 is required for the maintenance of adult neural stem cell fate in vivo. Mechanistically, Gpc4 regulates self-renewal of ESCs by modulating Wnt/ß-catenin signaling activities. Thus, our findings establish that Gpc4 acts at the interface of extrinsic and intrinsic signal regulation to fine tune stem cell fate. Moreover, the ability to uncouple pluripotent stem cell differentiation from tumorigenic potential makes Gpc4 as a promising target for cell-based regenerative therapies.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Células Madre Embrionarias/metabolismo , Glipicanos/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Diferenciación Celular , Procesos de Crecimiento Celular/fisiología , Transformación Celular Neoplásica/patología , Células Cultivadas , Células Madre Embrionarias/citología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Células Madre Pluripotentes/citología , Transducción de Señal
12.
Proc Natl Acad Sci U S A ; 107(3): 1201-6, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20080708

RESUMEN

After their generation and specification in periventricular regions, neuronal precursors maintain an immature and migratory state until their arrival in the respective target structures. Only here are terminal differentiation and synaptic integration induced. Although the molecular control of neuronal specification has started to be elucidated, little is known about the factors that control the latest maturation steps. We aimed at identifying factors that induce terminal differentiation during postnatal and adult neurogenesis, thereby focusing on the generation of periglomerular interneurons in the olfactory bulb. We isolated neuronal precursors and mature neurons from the periglomerular neuron lineage and analyzed their gene expression by microarray. We found that expression of the bHLH transcription factor NeuroD1 strikingly coincides with terminal differentiation. Using brain electroporation, we show that overexpression of NeuroD1 in the periventricular region in vivo leads to the rapid appearance of cells with morphological and molecular characteristics of mature neurons in the subventricular zone and rostral migratory stream. Conversely, shRNA-induced knockdown of NeuroD1 inhibits terminal neuronal differentiation. Thus, expression of a single transcription factor is sufficient to induce neuronal differentiation of neural progenitors in regions that normally do not show addition of new neurons. These results suggest a considerable potential of NeuroD1 for use in cell-therapeutic approaches in the nervous system.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Diferenciación Celular/fisiología , Interneuronas/química , Bulbo Olfatorio/citología , Animales , Electroporación , Ratones
13.
Front Cell Neurosci ; 17: 1170170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377778

RESUMEN

Neurogenesis persists in the mammalian subventricular zone after birth, producing various populations of olfactory bulb (OB) interneurons, including GABAergic and mixed dopaminergic/GABAergic (DA) neurons for the glomerular layer. While olfactory sensory activity is a major factor controlling the integration of new neurons, its impact on specific subtypes is not well understood. In this study we used genetic labeling of defined neuron subsets, in combination with reversible unilateral sensory deprivation and longitudinal in vivo imaging, to examine the behavior of postnatally born glomerular neurons. We find that a small fraction of GABAergic and of DA neurons die after 4 weeks of sensory deprivation while surviving DA-neurons exhibit a substantial decrease in tyrosine hydroxylase (TH) expression levels. Importantly, after reopening of the naris, cell death is arrested and TH levels go back to normal levels, indicating a specific adaptation to the level of sensory activity. We conclude that sensory deprivation induces adjustments in the population of glomerular neurons, involving both, cell death and adaptation of neurotransmitter use in specific neuron types. Our study highlights the dynamic nature of glomerular neurons in response to sensory deprivation and provide valuable insights into the plasticity and adaptability of the olfactory system.

14.
Glia ; 60(6): 894-907, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22374709

RESUMEN

Astrocytes show large morphological and functional heterogeneity and are involved in many aspects of neural function. Progress in defining astrocyte subpopulations has been hampered by the lack of a suitable antibody for their direct detection and isolation. Here, we describe a new monoclonal antibody, ACSA-1, which was generated by immunization of GLAST1 knockout mice. The antibody specifically detects an extracellular epitope of the astrocyte-specific L-glutamate/L-aspartate transporter GLAST (EAAT1, Slc1a3). As shown by immunohistochemistry, immunocytochemistry, and flow cytometry, ACSA-1 was cross-reactive for mouse, human, and rat. It labeled virtually all astrocytes positive for GFAP, GS, BLBP, RC2, and Nestin, including protoplastic, fibrous, and reactive astrocytes as well as Bergmann glia, Müller glia, and radial glia. Oligodendrocytes, microglia, neurons, and neuronal progenitors were negative for ACSA-1. Using an immunomagnetic approach, we established a method for the isolation of GLAST-positive cells with high purity. Binding of the antibody to GLAST and subsequent sorting of GLAST-positive cells neither interfered with cellular glutamate transport nor compromised astrocyte viability in vitro. The ACSA-1 antibody is not only a valuable tool to identify and track astrocytes by immunostaining, but also provides the possibility of separation and further analysis of pure astrocytes.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Astrocitos/metabolismo , Encéfalo/citología , Transportador 1 de Aminoácidos Excitadores/inmunología , Transportador 1 de Aminoácidos Excitadores/metabolismo , Animales , Animales Recién Nacidos , Ácido Ascórbico , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Antígeno CD11b/metabolismo , Células Cultivadas , Electroporación/métodos , Transportador 1 de Aminoácidos Excitadores/deficiencia , Transportador 1 de Aminoácidos Excitadores/farmacología , Femenino , Citometría de Flujo , Gangliósidos/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Humanos , Magnesio , Ratones , Ratones Noqueados , Proteínas de la Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Proteínas del Tejido Nervioso/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Ratas , Ácidos Siálicos/metabolismo , Tritio/metabolismo , Vitamina B 6
15.
J Neurosci ; 30(39): 13201-10, 2010 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-20881139

RESUMEN

Shep1 is a multidomain signaling protein that forms a complex with Cas, a key scaffolding component of integrin signaling pathways, to promote the migration of non-neuronal cells. However, the physiological function of Shep1 in the nervous system remains unknown. Interestingly, we found that Shep1 and Cas are both concentrated in the axons of developing olfactory sensory neurons (OSNs). These neurons extend their axons from the olfactory epithelium to the olfactory bulb located at the anterior tip of the forebrain. However, in developing Shep1 knock-out mice, we did not detect penetration of OSN axons across the pial basement membrane surrounding the olfactory bulb, suggesting that Shep1 function is important for the establishment of OSN connections with the olfactory bulb. Interestingly, we observed reduced levels of Cas tyrosine phosphorylation in OSN axons of Shep1 knock-out mice, suggesting compromised Cas signaling function. Indeed, when embedded in a three-dimensional gel of basement membrane proteins, explants from Shep1 knock-out olfactory epithelium extend neuronal processes less efficiently than explants from control epithelium. Furthermore, ectopic expression of Shep1 in non-neuronal cells promotes cell migration through a collagen gel. Later in development, loss of Shep1 function also causes a marked reduction in olfactory bulb size and disruption of bulb lamination, which may be primarily attributable to the defective innervation. The greatly reduced OSN connections and hypoplasia of the olfactory bulb, likely resulting in anosmia, are reminiscent of the symptoms of Kallmann syndrome, a human developmental disease that can be caused by mutations in a growing number of genes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Movimiento Celular/fisiología , Conos de Crecimiento/fisiología , Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/fisiología , Prosencéfalo/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Movimiento Celular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Vías Olfatorias/citología , Vías Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/metabolismo , Prosencéfalo/citología , Prosencéfalo/metabolismo
16.
Curr Opin Neurobiol ; 18(3): 237-44, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18644448

RESUMEN

The chemokine CXCL12 (or SDF-1) and its receptor CXCR4 have originally been described as regulators of cell interactions in the immune system. However, over the past years it has become clear that this receptor/ligand pair is an important component of the machinery that controls cell migration in different regions of the developing nervous system. Here we will review some of these functions of the CXCL12/CXCR4 system, focusing on migration events in the cerebellum and the cortex. Furthermore, we will discuss these findings in light of the recently discovered second receptor for CXCL12, CXCR7, and the original functional properties of this molecule that have been described in zebrafish.


Asunto(s)
Movimiento Celular/fisiología , Quimiocina CXCL12/metabolismo , Neuronas/fisiología , Receptores CXCR4/fisiología , Transducción de Señal/fisiología , Animales
17.
BMC Neurosci ; 11: 2, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-20051123

RESUMEN

BACKGROUND: Survivin is a unique member of the inhibitor of apoptosis protein (IAP) family in that it exhibits antiapoptotic properties and also promotes the cell cycle and mediates mitosis as a chromosome passenger protein. Survivin is highly expressed in neural precursor cells in the brain, yet its function there has not been elucidated. RESULTS: To examine the role of neural precursor cell survivin, we first showed that survivin is normally expressed in periventricular neurogenic regions in the embryo, becoming restricted postnatally to proliferating and migrating NPCs in the key neurogenic sites, the subventricular zone (SVZ) and the subgranular zone (SGZ). We then used a conditional gene inactivation strategy to delete the survivin gene prenatally in those neurogenic regions. Lack of embryonic NPC survivin results in viable, fertile mice (SurvivinCamcre) with reduced numbers of SVZ NPCs, absent rostral migratory stream, and olfactory bulb hypoplasia. The phenotype can be partially rescued, as intracerebroventricular gene delivery of survivin during embryonic development increases olfactory bulb neurogenesis, detected postnatally. SurvivinCamcre brains have fewer cortical inhibitory interneurons, contributing to enhanced sensitivity to seizures, and profound deficits in memory and learning. CONCLUSIONS: The findings highlight the critical role that survivin plays during neural development, deficiencies of which dramatically impact on postnatal neural function.


Asunto(s)
Encéfalo/fisiopatología , Trastornos del Conocimiento/fisiopatología , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis/fisiología , Convulsiones/fisiopatología , Células Madre/fisiología , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Trastornos del Conocimiento/patología , Silenciador del Gen , Proteínas Inhibidoras de la Apoptosis , Interneuronas/patología , Interneuronas/fisiología , Discapacidades para el Aprendizaje/patología , Discapacidades para el Aprendizaje/fisiopatología , Masculino , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Inhibición Neural/fisiología , Neuronas/patología , Neuronas/fisiología , ARN Mensajero/metabolismo , Proteínas Represoras , Convulsiones/patología , Nicho de Células Madre/crecimiento & desarrollo , Nicho de Células Madre/patología , Nicho de Células Madre/fisiopatología , Células Madre/patología , Survivin
18.
Stem Cell Reports ; 15(4): 836-844, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32976763

RESUMEN

Neural stem cell populations generate a wide spectrum of neuronal and glial cell types in a highly ordered fashion. MicroRNAs are essential regulators of this process. T-UCstem1 is a long non-coding RNA containing an ultraconserved element, and in vitro analyses in pluripotent stem cells provided evidence that it regulates the balance between proliferation and differentiation. Here we investigate the in vivo function of T-UCstem1. We show that T-UCstem1 is expressed in the forebrain neurogenic lineage that generates interneurons for the postnatal olfactory bulb. Gain of function in neural stem cells increased progenitor proliferation at the expense of neuron production, whereas knockdown had the opposite effect. This regulatory function is mediated by its interaction with miR-9-3p and miR-9-5p. Based thereon, we propose a mechanistic model for the role of T-UCstem1 in the dynamic regulation of neural progenitor proliferation during neurogenesis.


Asunto(s)
MicroARNs/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Bulbo Olfatorio/citología , ARN Largo no Codificante/metabolismo , Animales , Animales Recién Nacidos , Recuento de Células , Proliferación Celular/genética , Ratones , MicroARNs/genética , Neuronas/citología , Neuronas/metabolismo , ARN Largo no Codificante/genética
19.
Elife ; 92020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32762844

RESUMEN

Different subtypes of interneurons, destined for the olfactory bulb, are continuously generated by neural stem cells located in the ventricular and subventricular zones along the lateral forebrain ventricles of mice. Neuronal identity in the olfactory bulb depends on the existence of defined microdomains of pre-determined neural stem cells along the ventricle walls. The molecular mechanisms underlying positional identity of these neural stem cells are poorly understood. Here, we show that the transcription factor Vax1 controls the production of two specific neuronal subtypes. First, it is directly necessary to generate Calbindin expressing interneurons from ventro-lateral progenitors. Second, it represses the generation of dopaminergic neurons by dorsolateral progenitors through inhibition of Pax6 expression. We present data indicating that this repression occurs, at least in part, via activation of microRNA miR-7.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis , Neuropéptidos/metabolismo , Bulbo Olfatorio/fisiología , Factor de Transcripción PAX6/metabolismo , Animales , Calbindinas/genética , Diferenciación Celular , Femenino , Proteínas de Homeodominio/genética , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Células-Madre Neurales/clasificación , Neuropéptidos/genética , Factor de Transcripción PAX6/genética
20.
Eur J Neurosci ; 30(7): 1209-18, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19788570

RESUMEN

Neural cell adhesion molecule (NCAM) plays an important role during neural development and in the adult brain, whereby most functions of NCAM have been ascribed to its unique polysialic acid (PSA) modification. Recently we presented evidence suggesting that expression of NCAM in vivo interferes with the maintenance of forebrain neuronal stem cells. We here aimed at investigating the fate of cells generated from NCAM-overexpressing stem cells in postnatal mouse brain and at elucidating the functional domains of NCAM mediating this effect. We show that ectopic expression of the NCAM140 isoform in radial glia and type C cells induces an increase in cell proliferation and consequently the presence of additional neuronal type A cells in the rostral migratory stream. A mutant NCAM protein comprising only fibronectin type III repeats and immunoglobulin-like domain 5 was sufficient to induce this effect. Furthermore, we show that the neurogenic effect is independent of PSA, as transgenic NCAM is not polysialylated in radial glia and type C cells. These results suggest that heterophilic interactions of NCAM with other components of the cell membrane must be involved.


Asunto(s)
Encéfalo/fisiología , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neurogénesis/fisiología , Neuronas/fisiología , Nicho de Células Madre/fisiología , Células Madre/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones , Ratones Endogámicos , Ratones Noqueados , Ratones Transgénicos , Mutación , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/genética , Neuroglía/fisiología , Isoformas de Proteínas/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA