Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 107(43): 18348-53, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20937899

RESUMEN

Studies diverge substantially on the actual magnitude of the North American carbon budget. This is due to the lack of appropriate data and also stems from the difficulty to properly model all the details of the flux distribution and transport inside the region of interest. To sidestep these difficulties, we use here a simple budgeting approach to estimate land-atmosphere fluxes across North America by balancing the inflow and outflow of CO(2) from the troposphere. We base our study on the unique sampling strategy of atmospheric CO(2) vertical profiles over North America from the National Oceanic and Atmospheric Administration/Earth System Research Laboratory aircraft network, from which we infer the three-dimensional CO(2) distribution over the continent. We find a moderate sink of 0.5 ± 0.4 PgC y(-1) for the period 2004-2006 for the coterminous United States, in good agreement with the forest-inventory-based estimate of the first North American State of the Carbon Cycle Report, and averaged climate conditions. We find that the highest uptake occurs in the Midwest and in the Southeast. This partitioning agrees with independent estimates of crop uptake in the Midwest, which proves to be a significant part of the US atmospheric sink, and of secondary forest regrowth in the Southeast. Provided that vertical profile measurements are continued, our study offers an independent means to link regional carbon uptake to climate drivers.

2.
Chemosphere ; 326: 138421, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36935062

RESUMEN

Atmospheric aerosol optical, physical, and chemical properties play a fundamental role in the Earth's climate system. A better understanding of the processes involved in their formation, evolution, and interaction with radiation and the water cycle is critical. We report the analysis of atmospheric molecules/particles collected with a new sampling system that flew under regular weather balloons for the first time. The flight took place on January 18, 2022 from Reims (France). The samples were subsequently analyzed by high-resolution mass spectrometry (Orbitrap) to specifically infer hundreds of organic components present in 4 different layers from the troposphere to the stratosphere (up to 20 km). Additional measurements of O3, CO, and aerosol concentrations a few hours before this flight took place to contextualize the sampling. After separating common species found on each filter that might be common to atmospheric layers or residuals for contaminations, we found that each sample yields significant differences in the number and size of organic species detected that should reflect the unique composition of atmospheric layers. While tropospheric samples yield significantly oxidized and saturated components, with carbon numbers below 30 that might be explained by complex organics chemistry from local and distant source emissions, the upper tropospheric and stratospheric samples were associated with increased carbon numbers (C > 30), with a significantly reduced unsaturation number for the stratosphere, that might be induced by strong UV radiations. The multimodal distributions of carbon numbers in chemical formulas observed between 15 and 20 km suggest that oligomerization and growth of organic molecules may take place in aged air masses of tropical origin that are known to carry organic compounds even several km above the tropopause where their lifetime significantly increases. In addition, the presence of organics may also reflect the extended influence of wildfires smoke injected during the spring and summer in the NH hemisphere before the in situ observations and their long-lifetime in the upper troposphere and stratosphere.


Asunto(s)
Atmósfera , Clima , Atmósfera/química , Rayos Ultravioleta , Estaciones del Año , Aerosoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA